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Abstract

We propose a new model of firm reputation where product quality is persistent and depends
stochastically on the firm’s past investments. Reputation is then modeled directly as the market
belief about quality. We analyze how investment incentives depend on the firm’s reputation
and derive implications for reputational dynamics.

Reputational incentives depend on the specification of market learning. When consumers
learn about quality through perfect good news signals, incentives decrease in reputation and
there is a unique work-shirk equilibrium with ergodic dynamics. When learning is through per-
fect bad news signals, incentives increase in reputation and there is a continuum of shirk-work
equilibria with divergent dynamics. For a large class of imperfect Poisson learning processes
and low investment costs, we show there exists a work-shirk equilibrium with path-dependent
dynamics. We also derive conditions under which this equilibrium is essentially unique.

1 Introduction

In most industries firms can invest into the quality of their products through human capital
investment, research and development, or organizational change. While imperfect monitoring by
consumers gives rise to a moral hazard problem, the firm can share in the created value by building
a reputation for quality, justifying premium prices. This paper analyzes the investment incentives
in such a market, characterizing how they depend on the current reputation of the firm and the
information structure.
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Our key innovation over classical models of reputation and repeated games is to model product
quality as a function of past investments rather than current effort. From a modeling perspective,
the introduction of persistence turns quality into a state variable and allows us to model reputation
directly as the market’s belief about quality. Therefore, our firm works to actually build the
quality that underlies reputation, rather than to signal an exogenous type or to avoid punishments
by a counterparty. From an economic perspective, persistence alleviates the firm’s moral hazard
problem. Investment affects quality in a lasting way, and yields rewards even when the firm is
believed to be shirking in the future.

The model gives rise to simple Markovian equilibria that explain when a firm builds a rep-
utation, when it invests to maintain its reputation, and when it chooses to run its reputation
down. We investigate these incentives for a broad class of Poisson learning processes. Our results
explain why the incentives for academics, where the market learns through good news events like
publications, should be different from the incentives for clinical doctors, where the market learns
through bad news events like malpractice suits.

In the model, illustrated in Figure 1, one long-lived firm sells a product of high or low quality
to a continuum of identical short-lived consumers. Product quality is a stochastic function of the
firm’s past investments. In particular, the quality at time t is determined by the quality at t− dt

and the investment at time t. Consumers’ expected utility is determined by the firm’s quality, so
their willingness to pay is given by the market belief that quality is high; we call this belief the
reputation of the firm and denote it by xt.

Consumers observe neither quality nor investment directly, but learn about the firm’s quality
through Poisson signals. A signal is good news if it indicates high quality, and bad news if it
indicates low quality. Market learning is imperfect if no Poisson signal perfectly reveals the firm’s
quality.1 The firm’s reputation changes as a function of the signals or their absence, and as a
function of market beliefs about its investment.

Investment is incentivized by the difference in value between a high and low quality firm, which
we call the value of quality. Quality derives its value by increasing expected utility to consumers
and thereby the firm’s reputation. Crucially, as quality is persistent, this reputational payoff does
not take the form of an immediate one-off reputational boost, but accrues to the firm as a stream
of future reputational dividends. Theorem 1 formalizes this idea by writing the value of quality as
the present asset value of its future reputational dividends.

In Section 4 we characterize equilibria under perfect Poisson learning. For perfect good news,
where high quality gives rise to product breakthroughs that boost reputation to one, reputational

1MacLeod (2007) coins the terms ‘normal goods’ for experience goods that are subject to bad news learning
and ‘innovative goods’ for experience goods that are subject to good news learning. Examples abound. Good news
signals occur in academia when a paper becomes famous, in the bio-tech industry when a trial succeeds, and for
actors when they win an Oscar. Bad news signals occur in the computer industry when batteries explode, in the
financial sector when a borrower defaults, and for doctors when they are sued for medical malpractice.
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Figure 1: Timeline. Quality is persistent and depends stochastically on past investments. The market
learns about the firm’s quality through Poisson signals. Reputation then evolves as a function of market
learning and equilibrium beliefs about the firm’s investments. As quality is persistent, current investment
affects all future signals rather than just the current signal.

dividends and investment incentives decrease in the firm’s reputation. Equilibrium must be work-
shirk in that the firm works when its reputation lies below some cutoff x∗, and shirks above.
Intuitively, a breakthrough that takes the firm’s reputation to one is more valuable to a firm with
low reputation, so this firm has the highest incentive to invest in quality. Reputational dynamics
are ergodic in a work-shirk equilibrium because equilibrium beliefs induce an upward trend for
low reputations and a downward trend for high reputations. Under a parametric restriction the
work-shirk equilibrium is unique.

For perfect bad news signals, where high quality insures the firm against product breakdowns
that destroy its reputation, reputational dividends and investment incentives increase in the firm’s
reputation. Equilibrium must be shirk-work in that the firm works when its reputation lies above
some cutoff x∗, and shirks below. Intuitively, a breakdown that takes the firm’s reputation to zero is
more costly to a firm with high reputation, so this firm has the highest incentive to invest in quality.
Reputational dynamics are path-dependent in a shirk-work equilibrium because equilibrium beliefs
induce a downward trend for low reputations and an upward trend for high reputations. There may
be a continuum of shirk-work equilibria: the multiplicity is caused by the divergent reputational
drift at the cutoff which creates a discontinuity in the value functions and investment incentives.
Intuitively if a firm is believed to be working at the cutoff, there are higher incentives to actually
work in order to capitalize on the market’s favorable beliefs, creating a self-fulfilling prophecy.

In Section 5 we analyze imperfect Poisson learning processes. When the signal is imperfect,
Bayesian learning ceases for extreme reputations and reputational dividends tend to be hump-
shaped. While this suggests a shirk-work-shirk equilibrium, we surprisingly show existence of a
work-shirk equilibrium for a large range of parameter values. We also derive conditions under
which the equilibrium is essentially unique.

The work-shirk result relies on a fundamental asymmetry. For x ≈ 1, work is not sustainable:
If the firm is believed to work, its reputation stays high and reputational dividends stay small,
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undermining incentives to actually invest. For x ≈ 0, work is sustainable: If the firm is believed to
work, its reputation drifts up and reputational dividends increase, generating incentives to invest.
Crucially, a firm with a low reputation works not because of the small, immediate reputational
dividends but because of the larger future dividends it expects after its reputation has drifted up.
Thus, persistent quality and the endogenous reputational drift jointly introduce an asymmetry
that gives rise to the work-shirk equilibrium.

The work-shirk equilibrium is essentially unique if the firm’s reputation may rise, even when
it is believed to be shirking. This condition is satisfied if the signal is good news where reputation
jumps up at a signal arrival; it is also satisfied if the signal is bad news and positive reputational
drift from the absence of a bad signal overcomes the negative drift from adverse equilibrium beliefs.
Under this condition, putative shirk-work-shirk equilibria unravel, as the favorable beliefs in the
work-region guarantee high investment incentives for a firm around the shirk-work cutoff. To the
contrary, if the condition is not satisfied, adverse beliefs below a shirk-work cutoff are self-fulfilling
and support a continuum of shirk-work-shirk equilibria.

1.1 Literature

The key feature distinguishing our paper from classical models of reputation and repeated games
is that product quality is a function of past investments rather than current effort. This difference
is important. In classical models, the firm exerts effort to convince the market that it will also
exert effort in the future. In our model, a firm’s investment increases its quality and future revenue
independent of market beliefs about future investment since quality is persistent.

The two reputation models closest to ours are Mailath and Samuelson (2001) and Holmström
(1999), which both model reputation as the market’s belief about some exogenous state variable.
The mechanisms linking effort, type and utility are depicted in Figure 2. In Mailath and Samuelson
(2001) a competent firm, that can choose to work or shirk, tries to distinguish itself from an
incompetent type, that always shirks. A reputation for competence benefits the firm to the degree
that the market expects a competent firm to work. With imperfect monitoring, a firm with a high
reputation shirks because updating is slow. This causes effort to unravel from the top as a firm
just below a putative work-shirk cutoff finds it unprofitable to further invest into its reputation.
In our model, persistent quality prevents this unraveling because current investment affects the
firm’s future reputation and revenue irrespective of beliefs about its future investments.

Holmström’s (1999) signal-jamming model is similar to ours in that the firm’s type directly
affects consumers’ utility. In this model, the firm works to induce erroneous market beliefs that
its exogenous ability type is higher than in reality. This is in stark contrast to our model, where
a firm invests to actually improve its endogenous quality type.

In both of these papers, learning about a fixed type eventually vanishes and so do reputational
incentives. These are instances of a more general theme: Cripps, Mailath, and Samuelson (2004)
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Figure 2: Comparison of reputation models. The literature usually models reputation as belief
over some exogenous type. This type affects consumer utility either directly, as in Holmström (1999) or
indirectly through the cost of effort, Mailath and Samuelson (2001). In contrast, our firm controls its type
endogenously through its investment.

show that with imperfect monitoring and fixed types, reputation is always a short-run phenomenon.
A long-run analysis of reputation requires ‘... some mechanism by which the uncertainty about
types is continually replenished’. Our stochastic investment into quality is a natural candidate for
this mechanism. Unlike models of exogenous shocks, such as Mailath and Samuelson (2001) and
Holmström (1999), in which reputation simply trails the shocks, the reputational dynamics of our
model are endogenously determined by the forward-looking reputational incentives.2

There is a wider literature on lifecycle effects in reputation models, as surveyed in Bar-Isaac
and Tadelis (2008). Some of these results can be understood through our analysis of different
learning processes: With perfect good news learning, firms with low reputation try to build, or
buy a reputation (Tadelis (1999)). With perfect bad news learning, firms with high reputation
have high incentives to maintain them (Diamond (1989)). With imperfect learning, reputational
incentives are hump-shaped (Benabou and Laroque (1992), Mailath and Samuelson (2001)).3

In contrast to the repeated games literature (e.g. Fudenberg, Kreps, and Maskin (1990)), our
model is distinguished by an evolving state variable. Investment directly feeds through to future
reputation and revenue in our model, rather than preventing deliberate punishment by a counter-
party.4

Our model has clear empirical predictions concerning the dynamics of reputations. While
2Liu (2009) gives an alternative explanation of long-run reputational dynamics that is driven by imperfect, costly

recall and lack of a public posterior.
3From a technical perspective our paper differs from other recent reputation models in continuous-time, Faingold

and Sannikov (2010) and Atkeson, Hellwig, and Ordonez (2010), in that we directly analyze firm value and investment
incentives as integrals over profits and reputational dividends, rather than deriving ODEs for firm value as a function
of reputation.

4Our model is related to other literatures. Fishman and Rob (2005) use a repeated game with imperfect mon-
itoring to explain the dynamics of firm size. In the contract design literature, models with persistent effort have
been studied by Fernandes and Phelan (2000) and Jarque (2010). Finally, the contrast between classical reputation
models and our model is analogous to the difference between models of industry dynamics with exogenous types
(Jovanovic (1982), Hopenhayn (1992)) and those with endogenous capital accumulation (Ericson and Pakes (1995)).
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there is a growing empirical literature concerning reputation (Bar-Isaac and Tadelis (2008)), most
of these papers are static, focusing on quantifying the value of reputation. One notable exception
is Cabral and Hortaçsu (2010) which shows that an eBay seller who receives negative feedback
becomes more likely to receive additional negative feedback, and is more likely to exit. This is
consistent with our bad news case where a seller who receives negative feedback stops investing.

2 Model

Overview: There is one firm and a continuum of identical consumers. Time t ∈ [0,∞) is con-
tinuous5 and the common interest rate is r ∈ (0,∞). At time t the firm produces one unit of a
product that can have high or low quality θt ∈ {L,H}, where L = 0 and H = 1. The firm also
chooses to invest into future product quality with intensity ηt ∈ [0, 1] at a flow cost of cηt.

The firm and consumers are risk-neutral. The expected flow value of the product to a consumer
equals θt. Consumers’ common belief at time t about product quality at time t is called the firm’s
reputation xt = Et [θt]. At time t the firm sets price equal to the expected value xt, so consumers’
expected utility is 0 and the firm’s flow profit is xt − cηt.

Technology: Initial quality is θ0 ∈ {L,H}. Investment controls future product quality via
a Poisson process with arrival rate λ that models quality obsolescence through unpredictable
technology shocks. Quality at time t is determined by the firm’s investment at the most recent
technology shock s ≤ t, i.e. Pr(θt = H) = ηs; between shocks quality is constant, so if there has
been no shock in [0, t] then θt = θ0.6 At time t, the time of the last shock s ≤ t is distributed
with density λe−λ(t−s) so that expected quality at time t is a geometric sum of past investments
ηt = (ηs)s∈[0,t]:

Eηt [θt] =
∫ t

0
λeλ(s−t)ηsds + e−λtE [θ0] . (2.1)

A Markovian formulation of the same stochastic process is described by an infinitesimal quality
transition matrix with diagonal entries 1 − ληtdt for low quality and 1 − λ (1− ηt) dt for high
quality. This formulation shows that we can interpret the firm’s investment as a low quality firm
buying the arrival rate of a quality improvement, and a high quality firm abating the arrival rate
of a quality deterioration.

5There is an obvious analogue of our model in discrete time. While this discrete-time model has many expositional
advantages and many of our results remain true in discrete time, finite intervals between actions mean than simple
properties like monotonicity (Lemma 3) may fail since a firm with a low reputation may leap-frog a firm with a high
reputation.

6This formulation provides a tractable way to model product quality as a function of past investments. One can
interpret investment as the choice of absorptive capacity, determining the ability of a firm to recognise new external
information and apply it to commercial ends (Cohen and Levinthal (1990)). Equivalently, one could assume the firm
observes arrivals of technology shocks, and then chooses whether to adopt the new technology at cost k = c/λ to
become high quality, or to forgo the opportunity and become low quality.
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Information: Investment ηt and actual product quality θt are observed only by the firm. Initially
the firm’s reputation is given by x0 = E0[θ0]. Consumers learn about quality through a second
Poisson process. The arrival rate of these Poisson signals at time t depends on current quality
and equals µL if θt = L, and µH if θt = H. Conversely, the arrival rate of technology shocks
is independent of past signals. A public history ht at time t thus consists of a sequence of past
signals 0 ≤ t1 ≤ · · · ≤ tn ≤ t.7 We say that the learning process is good news if the net arrival rate
µ := µH − µL is positive, perfect good news if µL = 0, bad news if µ < 0, and perfect bad news if
µH = 0. Market learning is imperfect if µL, µH > 0 and µ 6= 0.

Reputation updating: The firm’s reputation xt evolves as a function of believed investments
η̃t and the public history of signals ht− up to time t. Formally xt = Et [θt] = Eη̃t,ht− [θt], where
the ‘−’ indicates that reputation at time t does not take account of signals at time t. Suppose the
firm is believed to invest at intensity η̃t over the time interval [t, t + dt).

First, if no signal arrives then reputation at the end of the interval is:

xt+dt = λdtη̃t + (1− λdt)
xt (1− µHdt)

xt (1− µHdt) + (1− xt) (1− µLdt)
.

The term λdtη̃t reflects the possibility that quality became obsolete in [t, t + dt) and is newly
determined based on η̃t. The second term reflects learning about quality at time t based on the
absence of a signal in [t, t+ dt) and Bayes’ rule. In the limit as dt → 0, absent a signal, reputation
evolves smoothly with reputational drift:

d(xt) = λ (η̃t − xt)− µxt (1− xt) . (2.2)

In Section 2.1 we impose restrictions on η̃t to ensure that the ODE ẋt = d (xt) has a unique solution
x∅t that describes the reputational trajectory in the absence of signals.

Second, if there is a signal at time t then reputation jumps from xt− (the limit of the reputation
before the jump) to:

xt = j (xt−) :=
µHxt−

µHxt− + µL (1− xt−)
= xt− +

µxt− (1− xt−)
µHxt− + µL (1− xt−)

(2.3)

With good news the signal indicates high quality and j (x) > x; with bad news we have j (x) < x.
Believed investment η̃ controls the reputational drift, and actual investment η controls the

distribution of signal arrivals. We call the resulting stochastic process that governs reputation xt

7The public history ht can be interpreted as consumers’ realized utilities that consumers share perfectly. Alter-
natively, it may represent information distinct from utility realizations; under this interpretation we need to assume
that consumers are short-lived and do not share their experiences.
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reputational dynamics.

Markov perfect equilibrium: We assume that market beliefs about investment η̃t = η̃ (xt)
depend on calendar time t and the public history ht− only via the firm’s reputation xt. As a
result, optimal investment η = η (θ, x) also depends on history only via the firm’s reputation.8

The firm’s value is a function of the initial quality and reputation, the firm’s investment and the
market’s beliefs,

Vθ0 (x0; η, η̃) := Eθ0,x0,η,η̃

[∫ ∞

t=0
e−rt(xt − cηt)dt

]
. (2.4)

When the context is clear, we often drop η and η̃ from the notation and write firm value as a
function of its quality and its reputation, Vθ(x). A Markov perfect equilibrium 〈η, η̃〉, or simply
equilibrium consists of a Markovian investment function η : {L,H} × [0, 1] → [0, 1] for the firm
and Markovian market beliefs η̃ : [0, 1] → [0, 1] such that:

(a) Investment maximizes firm value, η ∈ arg maxη {Vθ0 (x0; η, η̃)},

(b) Market beliefs are correct, η̃ (x) = xη (H, x) + (1− x) η (L, x),

and additionally the following technical regularity conditions are satisfied:

(c) Market beliefs η̃ (x) give rise to a well-defined law of motion (2.2)

(d) Investment as a function of time is forward-continuous: η (x0) = limδ→0 η
(
x∅δ

)
for all x0.

Condition (d) ensures that reputational dynamics and firm value are responsive to instanta-
neous investment by ruling out strategies where the firm ‘pulses’ its investment, such as η0 = 0
and ηt = 1 for t > 0. Below we discuss conditions on η̃ that ensure that (c) and (d) are satisfied.

We solve for equilibrium as follows. Consider a Markovian candidate equilibrium, i.e. Markovian
investment η : {L,H} × [0, 1] → [0, 1] and beliefs η̃ : [0, 1] → [0, 1] such that beliefs are correct
(b), and conditions (c) and (d) are satisfied. We then verify whether 〈η, η̃〉 is a Markov perfect
equilibrium by calculating investment incentives according to Theorem 1 and checking whether the
firm’s investment choice is optimal as characterised by Lemma 4, below. That lemma implies that
we can restrict attention to candidate equilibria where investment does not depend on quality, i.e.
η (θ, x) = η (x) = η̃ (x), and we simply denote candidate equilibria by η thereafter.

8In principle, investment η and beliefs η̃ could depend on time t and the entire public history ht−, and investment
additionally on past realizations of quality. We assume that market beliefs η̃ are Markovian because we think of the
continuum of consumers as sharing their experience in a sufficient yet incomplete manner, e.g. through consumer
reports.
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2.1 Reputational Dynamics

In this section we impose restrictions on the Markovian beliefs η̃ (x) to ensure that conditions (c)
and (d) are satisfied, we introduce the ‘work-shirk’ terminology, and we show that reputational
dynamics are ergodic in any work-shirk equilibrium.

First, we assume that η̃(x) is piecewise constant and equal to 0 or 1 for all x but a finite number
of cutoffs 0 ≤ x∗1 < · · · < x∗n ≤ 1 where η̃ is discontinuous. This restriction on investment as a
function of reputation does not yet mean that dynamics are well-defined: if reputational drift is
strictly positive below x∗ and strictly negative above x∗, then η̃ (x∗) must be such that the drift
at x∗ is zero. To account for this complication we assume that

d(x∗i ) > 0 ⇒ d(x∗i ) = lim
ε→0

d(x∗i + ε) and d(x∗i ) < 0 ⇒ d(x∗i ) = lim
ε→0

d(x∗i − ε) (2.5)

at any cutoff x∗i . Given any x∗i we can choose η̃(x∗i ) such that (2.5) holds. Following Klein and
Rady (2010), this implies that conditions (c) and (d) are satisfied.

We call x∗i a work-shirk cutoff if η̃ jumps up at x∗i ; otherwise x∗i is a shirk-work cutoff. We say
that reputational drift is convergent at work-shirk cutoff x∗i if it is positive below the cutoff and
negative above. Conversely, we say that reputational drift is divergent at shirk-work cutoff x∗i if it
is negative below the cutoff and positive above. A cutoff is permeable if reputational drift is either
strictly positive in a neighborhood of the cutoff or strictly negative. If reputational drift at x∗i is
convergent or x∗i is permeable, investment η̃ (x∗i ) is uniquely determined by (2.5). If reputational
drift at x∗i is divergent, multiple values of η̃ (x∗i ) are compatible with (2.5). A candidate equilibrium
is work-shirk if there exists a single work-shirk cutoff x∗ ∈ (0, 1), so η̃ = 1 below x∗ and η̃ = 0
above x∗. Conversely, a candidate equilibrium is shirk-work if there exists a single shirk-work
cutoff x∗ ∈ [0, 1], so η̃ = 0 below x∗ and η̃ = 1 above x∗.9 Finally, a candidate equilibrium is full
work if η̃ ≡ 1 and full shirk if η̃ ≡ 0.

Finally, we call reputational dynamics in equilibrium 〈η, η̃〉 ergodic if there exists a probability
distribution F over [0, 1] such that for any starting values x0 reputation xt converges to F in
distribution as t →∞.

Lemma 1 In any candidate equilibrium 〈η, η̃〉 that is work-shirk, full work or full shirk, reputa-
tional dynamics are ergodic.

Proof. In Appendix A.1. ¤

9We do not allow for work-shirk cutoffs x∗ = 0 or 1, because (2.5) implies η̃ (x∗) = 0 for x∗ = 0, so a work-shirk
candidate equilibrium with cutoff x∗ = 0 is identical to the full shirk candidate equilibrium; similarly work-shirk
with cutoff x∗ = 1 equals full work. To the contrary, we do allow for shirk-work cutoffs x∗ = 0 or 1 because a
shirk-work candidate equilibrium with cutoff x∗ = 0 and η̃ (x∗) = 0, where the firm works at all reputation levels
except at 0, is not just well-defined but has qualitatively different properties than a full work candidate equilibrium,
see proof of Theorem 3(b).
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2.2 Value Functions

To fix ideas and prepare for subsequent analysis, we now show that value functions are bounded
and equilibrium value functions are monotone.

Lemma 2 In any candidate equilibrium 〈η, η̃〉, the value function of the firm Vθ(x) is bounded and
takes values in [−c/r, 1/r].

Proof. At any time t profits are bounded: xt − cηt ∈ [−c, 1]. ¤

Lemma 3 In any equilibrium 〈η, η̃〉, the value function of the firm Vθ(x) is strictly increasing in
reputation x.

Proof. Fix initial reputations x0 < x′0 of a “low” and “high” firm with initial quality θ0. Suppose
the high firm chooses the non-Markovian strategy η′ that mimics equilibrium investment of the
low firm, i.e. if at time t after history ht− the low firm has reputation xt = xt (x0, ht− , η̃) then
η′t = η (θt, xt (x0, ht− , η̃)). Adopting this strategy, the high firm’s quality θ′t is governed by the same
process as the equilibrium quality θt of the low firm. Thus these firms face the same distribution
of public histories and the reputation of the high firm never falls behind, i.e. x′t ≥ xt with strict
inequality for t close to zero. Then the profit of the high firm with investment strategy η′ always
exceeds the equilibrium profit of the low firm, i.e. x′t−cη′t ≥ xt−cη (xt), because revenue is greater
for the high firm by the above argument, and costs are equal by construction. This completes the
proof because the equilibrium value of the high firm Vθ (x′0) is weakly higher than its value from
the feasible strategy η′. ¤

Value functions are not necessarily continuous in reputation. At a shirk-work cutoff with
divergent drift, future reputation is discontinuous as a function of current reputation and so are
value functions. However, Lemma 8(a) in Appendix C.2 shows that value functions are continuous
for work-shirk candidate equilibria.

2.3 Optimal Investment Choice

Fix a candidate equilibrium. The marginal benefit of investment over [t, t + dt) is the probability
of a technology shock hitting, λdt, times the difference in value functions ∆ (x) := VH (x)−VL (x),
which we call the value of quality. The marginal cost of investment is c, so equilibrium investment
η (θ, x) must satisfy

η (θ, x) =

{
1 if c < λ∆(x) ,

0 if c > λ∆(x) .
(2.6)

Quality after the shock is independent of current quality, so the benefit of investment is independent
of the firm’s current quality. This implies that our results are not driven by the asymmetric
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information about product quality, but solely by the unobserved investment into future quality.
Lemma 4 formalizes this intuition:

Lemma 4 A candidate equilibrium 〈η, η̃〉 is an equilibrium if and only if the ‘bang-bang’ equa-
tion (2.6) holds for all (θ, x). Hence equilibrium investment is independent of quality as long as
λ∆(x) 6= c.

Proof. For a rigorous proof of the above intuition we expand the firm’s current value into its
profits over [t, t + δ) and its expected continuation value

Vθ0 (x0) = (x0 − cη (x0)) δ + Ex0,θ0

[
e−rδVθδ

(xδ)
]

+ o (δ)

The continuation value in turn depends on η (x0) only in the case of a technology shock,

Ex0,θ0

[
e−rδVθδ

(xδ)
]

= e−(r+λ)δ Ex0,θ0 [Vθ0 (xδ)]︸ ︷︷ ︸
no λ-shock

+λδ (η (x0) VH (x0) + (1− η (x0))VL (x0))︸ ︷︷ ︸
λ-shock

+o (δ) .

Both steps use the fact the investment function is forward-continuous; the second step also uses
that the value function is forward-continuous in expectation, i.e. Vθ (x0) = limδ→0 E [Vθ (xδ)]. The
marginal profit of investment over [t, t + δ) is thus given by −cδ + λδ (VH (x0)− VL (x0)) so the
optimal investment η∗ is characterized by (2.6). ¤

When marginal costs and benefits of investment coincide, i.e. when c = λ∆(x), optimal
investment is indeterminate and may in principle depend on the firm’s quality. Consider such an
equilibrium 〈η, η̃〉 with η (H, x) 6= η (L, x). By Lemma 4, the candidate equilibrium 〈η, η̃〉 with
investment η (x) = η̃ (x) is also an equilibrium because 〈η, η̃〉 and 〈η, η̃〉 give rise to identical value
functions and investment incentives. As they also give rise to the same reputational dynamics we
consider these equilibria as identical and henceforth restrict attention to candidate equilibria 〈η, η̃〉
with η (θ, x) = η̃ (x) and denote them by η.

2.4 First-Best Solution

As a benchmark, suppose product quality is publicly observed so price equals quality. The benefit
of investing equals the obsolescence rate λ, times the price differential 1, divided by the effective
discount rate r + λ. Thus first-best investment is given by:

η =

{
1 if c < λ

r+λ

0 if c > λ
r+λ

. (2.7)

In our model, there is no equilibrium with positive investment if c > λ/ (r + λ): Investment
decreases welfare and consumers receive zero utility in equilibrium, so firm profits must be negative.
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The firm therefore prefers to shirk at all levels of reputation, thereby guaranteeing itself a non-
negative payoff. Our results are therefore non-trivial only if c < λ/ (r + λ).

3 Value of Quality

In any candidate equilibrium, the firm’s value Vθ(x) is a function of its reputation x and its quality
θ. While reputation directly determines revenue (see Lemma 3), quality derives its value indirectly
through its effect on reputation. More precisely, we show below (in Theorem 1) that the value of
quality can be written as a present asset value of future reputational dividends.

To analyze the value of quality ∆(x) = VH(x) − VL(x), we expand the value functions into
current profits and continuation values as in the proof of Lemma 4. Current profits cancel because
both current revenue and costs depend on reputation but not on quality. The continuation values
are discounted at both the interest rate r and the quality obsolescence rate λ,

∆(x0) = e−(r+λ)dt [Eθ=H [VH(xdt)]− Eθ=L[VL(xdt)]] (3.1)

where Eθ=H [·] means that xt evolves conditional on θ = H. For a recursive formulation of ∆ (x) we
need to evaluate the value functions at the same levels of future reputation, and do so by adding
and subtracting a term Eθ=L [VH(xdt)] to obtain

∆(x0) = e−(r+λ)dt
[
Eθ=H [VH(xdt)]−Eθ=L [VH(xdt)]

]
+e−(r+λ)dt

[
Eθ=L [VH(xdt)]−Eθ=L [VL(xdt)]

]
.

The first term is the reputational dividend that captures the immediate reputational benefit of
high versus low quality; the second term is the continuation value. The dividend consists of
the incremental probability µ = µH − µL of a signal due to high quality, times the value of the
reputational jump j(x)− x. Hence:

∆(x0) = e−(r+λ)dt µ [VH (j(xdt))− VH(xdt)]︸ ︷︷ ︸
Rep. dividend

dt + e−(r+λ)dt Eθ=L[∆(xdt)]︸ ︷︷ ︸
Cont. value

(3.2)

Integrating this equation yields equation (3.3) in Theorem 1, which expresses the asset value of
quality as the discounted sum of future reputational dividends. Equivalently, equation (3.4) follows
from the alternative decomposition of (3.1) when we add and subtract Eθ=H [VL(xdt)] instead of
Eθ=L [VH(xdt)].

Theorem 1 Fix any candidate equilibrium η. Then two closed-form expressions for the value of
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quality are given by:

∆(x0) = Ex0,θ∞=L

[∫ ∞

0
e−(r+λ)tµ [VH (j(xt))− VH(xt)] dt

]
, (3.3)

= Ex0,θ∞=H

[∫ ∞

0
e−(r+λ)tµ [VL (j(xt))− VL(xt)] dt

]
, (3.4)

where θ∞ = L is short for θt = L for all t ∈ [0,∞).

Proof. See Appendix A.2. ¤

While standard reputation models incentivize effort through an immediate effect on the firm’s
reputation, investment in our model pays off through quality with a delay. Once quality is estab-
lished, it is persistent and generates a stream of reputational dividends until it becomes obsolete.
We must therefore evaluate the reputational incentives at future levels of reputation xt, rather
than just at the current level x0.

4 Perfect Poisson Learning

We first consider Poisson processes where a signal perfectly reveals the firm’s quality. Theorems
2 and 3 highlight how different learning processes lead to opposite investment incentives and
reputational dynamics. These cases are highly tractable and help to build intuition for more
general learning processes. The value functions can also be calculated explicitly, as shown in
Appendix B, which may be useful in applications.

4.1 Perfect Good News

Assume that consumers learn about quality via product breakthroughs that reveal high quality
θt = H with arrival rate µ. That is, µH = µ and µL = 0. When a breakthrough occurs, the
reputation jumps to one. Absent a breakthrough, updating evolves deterministically according to

d (xt) = λ (η̃t − xt)− µxt (1− xt) . (4.1)

The reputational dividend is the value of having a high quality in the next instant. This equals
the value of increasing the reputation from its current value to one, times the probability of a
breakthrough, i.e. µ(VH(1)− VH(x)). Using equation (3.3), the value of quality is given by

∆(x0) =
∫ ∞

0
e−(r+λ)tµ[VH(1)− VH(x∅t )]dt, (4.2)

where x∅t is the deterministic solution of the ODE ẋt = d (xt) with initial value x0. We do not
need to take an expectation in equation 4.2 because there are no signals conditional on low quality,
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so the reputational trajectory equals x∅t .
In equilibrium, the reputational dividend VH(1) − VH(x∅t ) is decreasing in x∅t so that ∆(x0)

is decreasing in x0. Intuitively, a breakthrough that boosts the firm’s reputation to one is most
valuable for a firm with a low reputation. Thus, investment incentives decrease in reputation and
any equilibrium must be full shirk, full work, or work-shirk.

In a work-shirk equilibrium with cutoff x∗ reputational dynamics converge to a cycle. Absent
a breakthrough, the firm’s reputation converges to a stationary point x̂ = min{λ/µ, x∗} where
the firm works with positive probability. At a breakthrough, the firm’s reputation jumps to
one. The firm is then believed to be shirking, so its reputation drifts down to x̂, absent another
breakthrough. In the long-run, the firm’s reputation therefore cycles over the range [x̂, 1]. In
case that λ ≥ µ, the firm’s reputation drifts up whenever it is believed to be working (see Figure
3(a)). Here, reputational drift is zero at x̂ = x∗, and the firm chooses to work with intensity
η(x∗) = x∗

(
1 + µ

λ (1− x∗)
)

at this point. In case that λ < µ, a cutoff x∗ > λ/µ is permeable and
reputation drifts into the work region [0, x∗] towards x̂ = λ/µ.

Theorem 2 Under perfect good news learning:

(a) Every equilibrium is work-shirk or full shirk.

(b) An equilibrium exists.

(c) In any equilibrium reputational dynamics are ergodic.

(d) If λ ≥ µ, the equilibrium is unique.

Proof. Part (a). Fix an equilibrium. Reputation x∅t follows (4.1), so an increase in x0 raises x∅t
at each point in time. Lemma 3 states that VH(x) is strictly increasing in x, so equation (4.2)
implies that ∆(x0) is strictly decreasing in x0.

We can rule out a full work equilibrium: If η(x) = 1 for all x, then x0 = 1 implies x∅t = 1 for
all t by (4.1); thus ∆(1) = 0 and a firm with perfect reputation prefers to shirk.

Part (b). For any x∗ ∈ [0, 1] let ∆x∗(x) be the value of quality of a firm with reputation x

in the candidate equilibrium with cutoff x∗ (where x∗ = 0 represents full shirk, and x∗ = 1 full
work).10 Lemma 9 in Appendix C.2 shows that value functions, and thus the value of quality
∆x∗ (x∗) at the cutoff is continuous in x∗. If λ∆0 (0) ≤ c, full shirk is an equilibrium. Otherwise,
if λ∆0 (0) ≥ c, there must be some x∗ with λ∆x∗ (x∗) = c by the intermediate value theorem since
∆1 (1) = 0

Part (c). Follows from Lemma 1.
10Recall that investment at the work-shirk cutoff x∗ is uniquely pinned down by condition (2.5).
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Figure 3: Reputational drift in work-shirk and shirk-work equilibria. This figure illustrates how
the reputational drift d (x) changes with the reputation of the firm, x. These pictures assume λ = µ for
perfect good news, λ = µL for perfect bad news, and x∗ = 1/2. The dark line shows equilibrium drift and
the arrows show its direction.

Part (d). Given λ ≥ µ, the deterministic trajectory x∅t is stationary at x∗ and equation (B.4)
in Appendix B.1 delivers a closed-form expression for ∆x∗(x∗) which is decreasing in x∗, implying
uniqueness of equilibrium. ¤

To understand the uniqueness result, Theorem 2(d), consider a work-shirk candidate equi-
librium with cutoff x∗ and let x be such that λ∆(x) = c. An increase in x∗ means the firm’s
reputation will not drift down as far, absent a breakthrough. This change benefits low-quality
firms more than high-quality firms, reducing ∆(·). As a result, x(x∗) is decreasing in x∗ and there
is a unique fixed point where x(x∗) = x∗.

4.2 Perfect Bad News

Assume that xt is generated by breakdowns that reveal low quality θt = L with arrival rate µL > 0,
while high quality products never suffer breakdowns, i.e. µH = 0. When a breakdown occurs, the
reputation drops to zero. Absent a breakdown, updating evolves deterministically according to

d (xt) = λ (η̃t − xt) + µLxt (1− xt) . (4.3)

The reputational dividend is the value of having a high quality in the next instant. Quality
insures the firm against a breakdown, so the reputational dividend equals µL(VL(x)−VL(0)). Using
equation (3.4), the value of quality is:

∆(x0) =
∫ ∞

0
e−(r+λ)tµL[VL(x∅t )− VL(0)]dt. (4.4)

where x∅t is the deterministic solution of the ODE (4.3) with initial value x0. We do not need to
take an expectation in equation 4.4 because there are no signals conditional on high quality, so
the reputational trajectory equals x∅t .

In equilibrium, the reputational dividend VL(x∅t )− VL(0) is increasing in x∅t , so that ∆(x0) is
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increasing in x0. Intuitively, a breakdown that destroys the firm’s reputation is most damaging
for a firm with a high reputation. Thus, investment incentives increase in reputation and any
equilibrium must be full work, full shirk, or shirk-work.

Shirk-work beliefs imply that reputational dynamics diverge. Consider a shirk-work equilibrium
where the firm shirks if its reputation is below x∗, and works above x∗. A firm that starts with
reputation above x∗ converges to reputation x = 1, absent a breakdown. If the firm is hit by
such a breakdown while its product quality is still low, reputation drops to zero and is trapped
there forever. A firm with reputation below x∗ initially shirks and may have either rising or falling
reputation, depending on parameters. In either case, its reputation will either end up at zero or
one.

Investment incentives in any shirk-work candidate equilibrium are maximized at x = 1 and
equal ∆ (1) = µL(1−c)

r(r+λ+µL) .
11 Thus, to obtain an equilibrium other than full shirk we have to assume:

c < λ
µL(1− c)

r(r + λ + µL)
. (4.5)

Theorem 3 Under perfect bad news learning:

(a) Every equilibrium is shirk-work, full shirk or full work.

(b) An equilibrium exists.

(c) In any shirk-work equilibrium with cutoff x∗ ∈ (0, 1) reputational dynamics are not ergodic.

(d) Assume (4.5) holds and λ ≥ µL. There are a < b such that every x∗ ∈ [a, b] is the cutoff of
a shirk-work equilibrium.

Proof. Part (a). Fix an equilibrium. Reputation x∅t follows (4.3), so an increase in x0 raises x∅t
at each point in time. Lemma 3 states that VL(x) is strictly increasing in x, so equation (4.4)
implies that ∆(x0) is increasing in x0.

Part (b). By part (a) any equilibrium is defined by a shirk-work cutoff x∗ ∈ [0, 1] and the
investment at the cutoff η (x∗). Let x̂ = 1 − λ/µL be the reputation where drift is zero when
η̃ (x̂) = 0. If x∗ ∈ (0, x̂) then the cutoff is permeable with positive drift and we must have
η (x∗) = 1. If x∗ ≥ x̂ then drift is divergent at the cutoff, so both η (x∗) = 0 and η (x∗) = 1 are
possible.12

For x∗ ≥ x̂ or x∗ = 0, let ∆x∗,0 (·) be the value of quality in the candidate equilibrium where
the firm shirks at reputations x ∈ [0, x∗] and works at reputations x ∈ (x∗, 1]. For x∗ = 1 this is
the full shirk candidate equilibrium. Similarly, for any x∗ ∈ [0, 1] define ∆x∗,1 (·) when the firm
shirks in [0, x∗) and works in [x∗, 1]. For x∗ = 0 this is the full work candidate equilibrium.

11This is because VH(1) = (1− c)/r and VL(1) = r+λ
r+λ+µL

(1− c)/r.
12For brevity, we ignore the third possible value η (x∗) = x∗ (1− µL (1− x∗) /λ) that would lead to d (x∗) = 0.
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Figure 4: Sets of equilibria under perfect bad news learning. This picture shows the value of quality
at the shirk-work cutoff ∆x∗,1(x∗) and ∆x∗,0(x∗) used in the proof of Theorem 3. On the left-hand side
we have λ ≥ µL, so that x̂ ≤ 0. The figure shows an interval of equilibria. On the right-hand side we
have λ < µL, so that x̂ > 0. In this case, ∆x∗,0(x∗) is only defined for x∗ = 0 and x∗ ≥ x̂. The figure shows
a single permeable equilibrium (the single point) and an interval of trapped equilibria.

Fix x∗ > 0. In Appendix B.3 we show that a permeable cutoff defines an equilibrium if the firm
is indifferent between working and shirking at the cutoff. That is, x∗ < x̂ defines an equilibrium if

λ∆x∗,1 (x∗) = c. (4.6)

A cutoff with divergent drift defines an equilibrium if, at the cutoff, the firm prefers to work when
believed to be working and prefers to shirk when believed to be shirking. That is, x∗ ≥ x̂ defines
an equilibrium if

λ∆x∗,0(x∗) ≤ c ≤ λ∆x∗,1(x∗). (4.7)

To complete the existence proof, we consider three cases. If λ∆x∗,1(x∗) > c for all x∗ > 0, there is
an equilibrium where the firm works at all reputation levels except zero. If λ∆x∗,1(x∗) < c for all
x∗ > 0, then full shirk is an equilibrium. Otherwise, we show that ∆x∗,1 (x∗) is continuous in x∗

so the intermediate value theorem implies that either (4.6) or (4.7) are satisfied.
Part (c). Both x = 0 and x = 1 are absorbing states in a shirk-work equilibrium. Hence,

dynamics cannot be ergodic.
Part (d). If λ ≥ µL, then x̂ ≤ 0 and ∆x∗,0(x∗) is defined for all x∗ ∈ [0, 1]. Equation (4.7)

is then satisfied for some x∗: for the upper bound, condition (4.5) implies cλ∆x∗,1(x∗) > c for
x∗ = 1; for the lower bound, λ∆x∗,0(x∗) = 0 < c for x∗ = 0. In Appendix B.3 we then prove
that, since the reputational drift at the cutoff is divergent, ∆x∗,η∗(·) is discontinuous at x∗ and
∆x∗,0(x∗) < ∆x∗,1(x∗). Hence (4.7) is satisfied for a continuum of x∗, as illustrated by Figure 4(a).
¤

When λ ≥ µL, adverse beliefs outweigh the absence of breakdowns and reputational drift is
always negative in the shirk-region [0, x∗), as shown in Figure 3(b). We call such an equilibrium
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Figure 5: Reputational drift in shirk-work equilibrium under bad news. This figure illustrates
how the reputational drift d(x) changes with the reputation of the firm, x. These pictures assume λ < µL

so that x̂ ∈ (0, 1). The left picture has x∗ < x̂, giving rise to a permeable equilibrium. The right picture
has x∗ > x̂, giving rise to a trapped equilibrium. The dark line shows equilibrium drift and the arrows show
its direction.

a trapped equilibrium because the firm cannot escape from the shirk-region. When the firm’s
reputation is above the cutoff, favorable market beliefs contribute to an increasing reputation and
the firm invests to insure itself against a product breakdown. At the cutoff, the firm works if it is
believed to be working and shirks if it is believed to be shirking.

Theorem 3(d) shows that there is an interval of shirk-work cutoffs satisfying the equilibrium
condition (4.7), as shown in Figure 4(a). The multiplicity is driven by a discontinuity in the value
function at the shirk-work cutoff, caused by the divergent reputational dynamics. Intuitively,
market beliefs become self-fulfilling. If the market believes the firm is shirking, it faces low future
reputation and dividends and investment incentives are low. Conversely, if the market believes the
firm is working, its reputation will rise and incentivizes the firm to invest in order to protect its
appreciating reputation.

When λ < µL the reputational dynamics may have additional interesting features. Let x̂ =
1−λ/µL be the stationary point of the drift where adverse market beliefs exactly cancel the absence
of breakdowns. In this case there may exist a qualitatively different permeable equilibrium: When
x∗ < x̂, the reputational drift is strictly positive on (0, 1) as the absence of breakdowns outweighs
the adverse beliefs in the shirk-region (0, x∗); this is illustrated in Figure 5(a). If xt passes x∗ before
a breakdown hits, the firm starts to work and its reputation converges to one if the technology
shock hits before the breakdown. Since the value functions are continuous at a permeable cutoff
x∗, there is at most one permeable equilibrium.

There may also exist trapped equilibria in this case. When x∗ > x̂, reputation in the shirk-
region drifts towards x̂ but the shirk-region is absorbing, just like in the case λ ≥ µL, as shown
in Figure 5(b). Since reputational drift is divergent at x∗, the value function is discontinuous
and there is a continuum of such equilibria. Figure 4(b) illustrates that permeable and trapped
equilibria co-exist for some parameter values.
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4.3 Work-Shirk vs. Shirk-Work Equilibria

Investment incentives differ fundamentally between the work-shirk equilibria under perfect good
news learning and the shirk-work equilibria under perfect bad news learning. In the former case
investment is rewarded by reputational boosts; these boosts are temporary because adverse equi-
librium beliefs at high reputations bring the reputation down again. In the latter case investment
averts a reputational loss; this loss is permanent because adverse equilibrium beliefs at low rep-
utations prevent a recovery. When the rate of quality obsolescence λ is high, the benefit of a
reputational boost disappears quickly while a reputational loss is still permanent. In this sense,
incentives in a shirk-work equilibrium are stronger than those in a work-shirk equilibrium.

Theorem 4 There exists λ∗ such that for all λ > λ∗:

(a) Under perfect good news learning, full shirk is the unique equilibrium.

(b) Under perfect bad news learning, any cutoff x∗ ∈ (0, 1] defines a shirk-work equilibrium, if
condition (4.5) is satisfied.

Proof. Part (a). By Theorem 2(d) equilibrium is unique when λ ≥ µ and we just need to show
that full shirk is an equilibrium. Investment incentives are decreasing by the proof of Theorem
2(a), so it suffices to verify that λ∆0 (0) ≤ c. By equation (3.4) the value of quality is bounded
above by the perpetuity value of the maximal dividends:

λ∆0(0) = Eθ∞=H

[
λ

∫ ∞

0
e−(r+λ)sµ [VL (1)− VL (xs)] ds

]
≤ λ

r + λ
µVL (1) .

The key step in the argument is that the dividend, and its upper bound µVL(1), vanish for high
values of λ. The drift d(x) ≤ −λx decreases reputation at an exponential rate, i.e. x∅t ≤ e−λtx0,
so for x0 = 1 we have

µVL (1) = µ

∫ ∞

0
e−rtx∅t dt ≤ µ

r + λ
.

For λ > µ/c, this term is smaller than c and we get

λ∆0(0) ≤ λ

r + λ

µ

r + λ
< c,

as required.
Part (b). Assume λ ≥ µ, pick any x∗ > 0 and assume for convenience that η (x∗) = 0. If

the firm starts in the shirk-region at x0 ≤ x∗ then its reputation will remain there forever and
reputational dividends are bounded above by µLVL (x∗). By the proof of part (a), this upper
bound is less than the cost c for high values of λ, and the firm prefers to shirk.
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If the firm starts in the work-region at x0 > x∗ then the drift d (x) > λ (1− x) decreases the
probability of low quality at an exponential rate, i.e. 1−x∅t ≤ e−λt (1− x0), and the value function
of a high-quality firm approaches the first-best perpetuity value:

VH (x0) =
∫ ∞

0
e−rt

(
x∅t − c

)
dt ≥

∫ ∞

0
e−rt

(
1− e−λt (1− x0)− c

)
dt =

1− c

r
− 1− x0

r + λ

Using equation (3.3) we write the value of quality as function of dividends µLVH (xt):

λ∆x∗ (x0) = Eθ∞=L

[
λ

∫ ∞

0
e−(r+λ)tµL(VH (xt)− VH (0))dt

]
= λ

∫ ∞

0
e−(r+λ)te−µLtµLVH

(
x∅t

)
dt

where the second line uses VH (0) = 0 and conditions on the absence of breakdowns Eθ∞=L [VH (xt)] =
e−µLtVH

(
x∅t

)
.

Together with VH

(
x∅t

) ≥ VH (x0), this yields a lower bound for investment incentives

λ∆x∗ (x0) ≥ λµL

r + λ + µL

(
1− c

r
− 1− x0

r + λ

)
·

This bound approaches µL(1−c)/r for high values of λ. Assumption (4.5) implies that µL(1−c)/r >

c, so for sufficiently large λ, working is optimal for any x∗ and all x0 > x∗. ¤

As λ →∞ our investment game approaches a repeated game where the firm chooses its quality
at every instant. Abreu, Milgrom, and Pearce (1991) study a repeated prisoners’ dilemma with
imperfect monitoring that approaches the same limit game as the frequency of play increases. They
find that only ‘bad news’ signals that indicate defection can sustain cooperation, while ‘good news’
signals that indicate cooperation are too noisy to deter defections without destroying all surplus
by punishments on the equilibrium path. Thus sustained cooperation depends on the learning
process in the same way as in our model. While the common limit already suggests this analogy,
our model highlights an alternative mechanism that distinguishes the role of bad news signals in
overcoming moral hazard, namely divergent reputational dynamics.

Theorem 4 has a surprising consequence: Providing more information about the firm’s quality
may be detrimental to equilibrium investment. Specifically, consider a shirk-work equilibrium
under perfect bad news learning. Suppose we improve the learning process by introducing an
additional perfect good news signal, so that low quality is revealed perfectly with intensity µb

and high quality with intensity µg (the two signals are assumed to be independent conditional on
current quality). The analysis in Sections 2 and 3 extends immediately to this learning process
with two Poisson signals and the reputational dividend is given by:

µg(Vθ(1)− Vθ(x)) + µb(Vθ(x)− Vθ(0)) = (µb − µg)Vθ(x) + µgVθ(1)− µbVθ(0).
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When good news is more frequent than bad news, i.e. µg > µb, reputational dividends and value
of quality are decreasing in reputation and any equilibrium must be work-shirk. If additionally
λ is high enough, the proof of Theorem 4(a) extends to this learning process, implying that full
shirk is the only equilibrium.

Thus for identical parameter values r, c, λ, there exist shirk-work equilibria if only the perfect
bad news signal is available, while full shirk is the only equilibrium when a perfect good news
signal is introduced additionally. Under perfect bad news learning a firm with a high reputation
works because a breakdown permanently destroys its reputation. Additional good news signals
grant the firm a second chance after a breakdown and undermine incentives to work hard in the
first place.

5 Imperfect Poisson Learning

In this section we suppose consumers learn about product quality through imperfect signals with
Poisson arrival rates µH > 0 and µL > 0. The analysis becomes more involved than in the case
of perfect Poisson learning because reputational dividends tend to be hump-shaped due to the
x (1− x) dampening factor in the Bayesian updating formula (2.3), rather than being monotonic
as with perfect learning. Integrals over such hump-shaped future dividends may take a complicated
shape. Nevertheless, Theorem 1 implies three robust qualitative features of equilibria across all
imperfect Poisson learning processes.

First, investment at the top cannot be sustained in equilibrium. If the firm is believed to be
working at the top, the value of quality is zero at x = 1 since current dividends are zero and, as
the firm’s reputation stays at x = 1, future dividends are zero as well. Intuitively, a firm that
is believed to be working at the top is almost certain to have a high reputation in the future,
undermining incentives to actually invest. The same argument applies in case of perfect good
news learning, while perfect bad news invalidates this argument as reputation drops to zero at a
breakdown. Second, for intermediate levels of reputation, dividends and the value of quality are
bounded below and the firm invests if the cost is low enough. Third, investment at the bottom
can be sustained in equilibrium. If the firm is believed to be working at the bottom, incentives are
high because the favorable beliefs push the firm’s reputation to intermediate levels where dividends
are high. In this case, the firm invests at low levels of reputation not because of the immediate
reputational dividends, which are close to zero, but because of the higher future dividends when
the firm’s reputation is sensitive to actual quality. Thus, the time-lag of the investment process
together with the reputational drift imply a fundamental asymmetry between incentives at the top
and the bottom.

These three arguments suggest that a work-shirk equilibrium exists for small costs; Theorem
5 confirms this for a large class of imperfect Poisson learning processes.
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Theorem 5 (Existence) Assume either imperfect bad news learning, or imperfect good news
learning and λ < µ. Then there exists c such that for any costs c ∈ (0, c):

(a) There exists a work-shirk equilibrium with cutoff x∗ ∈ (0, 1).

(b) Reputational dynamics in such an equilibrium are ergodic.

Proof. For part (a) see Appendix C. Part (b) follows from Lemma 1. ¤

We prove Theorem 5(a) by evaluating the reputational dividends that constitute the value of
quality and incentivize investment. Let ∆x∗(x) be the value of quality for a firm with reputation
x in a work-shirk candidate equilibrium with cutoff x∗. In the limit case of full work, the value
of quality ∆1 (x) is strictly positive on [0, 1) and monotonically decreasing on [1− ε, 1] with limit
∆1 (1) = 0, as illustrated in Figure 6. Thus for small c there exists x∗ such that:

λ∆1(x)





> c for x < x∗ (Work at low reputations),
= c for x = x∗ (Indifference at cutoff x∗),
< c for x > x∗ (Shirk at high reputations).

(5.1)

To prove existence we essentially want to replace ∆1 (·) on the left-hand-side with ∆x∗ (·). This
step requires not only that ∆x∗ (·) is close to ∆1 (·), but also that ∆x∗ (·) is decreasing at the cutoff
so that the firm prefers to shirk at high reputations above cutoff x∗.13 This is not immediate.
Suppose that learning is via good news, that the work-shirk cutoff x∗ is close to 1, and that the
reputational drift at x∗ is convergent. A reputational increment is valuable to the firm only as
long as xt 6= x∗: When xt = x∗ the increment disappears because of the convergent drift at x∗.
Therefore, the marginal value of reputation V ′

θ (x) vanishes at the cutoff x∗, and the reputational
dividend is increasing at x∗. Thus, we need to take seriously the possibility that ∆x∗(·) may be
increasing at x∗ as well.14

To show that the value of quality is decreasing at the work-shirk cutoff, we need a better
understanding of reputational dynamics and marginal values V ′

θ(x) for x, x∗ ≈ 1. Below the
cutoff, dynamics are approximately governed by drift d (x) ≈ (λ− µ) (1− x) and jumps of size
µ (1− x) /µH with arrival rate µθ. Above the cutoff, the drift d (x) ≈ −λ is so large compared to
the size of the shirk-region 1−x∗ that reputational dynamics are essentially reflected at the cutoff.

The marginal value of reputation and dividends above the cutoff x > x∗ are then small in
relation to those below the cutoff x < x∗. This is because a reputational increment essentially
disappears when xt = x∗, which happens much sooner for initial reputation x0 > x∗ than for initial

13Recall that investment at the work-shirk cutoff x∗ is uniquely pinned down by condition (2.5).
14Indeed, this is exactly what goes wrong for perfect good news learning and λ > µ as pointed out in Lemma

13(c). For such a learning process and low costs, any equilibrium has to involve an interval of reputations where the
firm is indifferent and chooses an internal level of investment η ∈ (0, 1).
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(a) Full Work (b) Work-Shirk

c

λ∆(x)

Reputation, x0 1

c

λ∆(x)

Reputation, x0 1x∗

Figure 6: Illustration of the value of quality under full work and in a work-shirk equilibrium.

reputation x0 < x∗. Therefore, the value of quality at the cutoff ∆x∗(x∗) is largely determined
by the dividends at x < x∗. For initial reputation above the cutoff x0 > x∗ the value of quality
∆x∗(x0) is an average of low dividends while xt > x∗, and a continuation value ∆x∗(x∗) when xt

hits x∗. This average comes to less than ∆x∗(x∗), so ∆x∗ (·) is decreasing at the cutoff.

Reputational dynamics in this work-shirk equilibrium are ergodic by Theorem 5(b). With bad
news learning and x∗ close enough to 1, the reputational drift is negative in the shirk region above
x∗, so the firm’s reputation eventually cycles over [0, x∗].15 In the work-region below x∗, the firm’s
reputation drifts up towards x∗. While bad signals can impose set-backs to the firm’s reputational
ascent, favorable equilibrium beliefs make reputation a sub-martingale so it eventually reaches the
work-shirk cutoff x∗. At the cutoff, the firm invests at intensity η(x∗) ∈ (0, 1), and reputation
remains constant until the next signal arrives, whereupon reputation drops and the firm resumes
to work.

With good news learning, µ > λ, and x∗ close enough to 1, the reputational drift in the work
region below λ/µ is positive, so reputation eventually cycles over [λ/µ, 1]. Above λ/µ, reputa-
tional drift is negative both in the work-region [λ/µ, x∗] and the shirk-region [x∗, 1] and evolves
in a pattern of downward drift and upward jumps. Below x∗, reputation is a sub-martingale and
signals eventually take the firm’s reputation into the shirk-region above the cutoff. At this point,
the strong negative drift above x∗ ≈ 1 quickly takes the reputation back through the cutoff into
the work-region.

Slow learning at x ≈ 0 and x ≈ 1 suggests another, shirk-work-shirk type of equilibrium
with a shirk-work cutoff x∗1 and a work-shirk cutoff x∗2. The existence of such a shirk-work-shirk
equilibrium hinges on the following condition. A learning process satisfies (HOPE) when a firm
with some initial reputation x0 has a chance of experiencing a higher reputation in the future,

15Specifically, the condition is that −λx∗ + (µL − µH) x∗ (1− x∗) ≤ 0 or x∗ ≥ 1− λ/ (µL − µH).
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even if it is believed to be shirking

Pr [xt > x0|x0, η̃ = 0] > 0 for some x0 and t > 0. (HOPE)

This condition is satisfied for any good news learning process since the firm’s reputation rises at a
signal arrival. For bad news learning it is satisfied if µL−µH > λ; then the absence of breakdowns
dominates the adverse equilibrium beliefs and reputational drift d (x) ≈ (µL − µH − λ)x is positive
at low levels of reputation. It is not satisfied for bad news learning with µL − µH ≤ λ where both
drift and jumps are negative if the firm is believed to be shirking.

Theorem 6 (Uniqueness) Fix any imperfect Poisson learning process:

(a) If (HOPE) is satisfied, then for any ε > 0 there exists cε > 0 such that for any cost c ∈ (0, cε)
and any equilibrium, the firm works at all reputation levels x ∈ (0, 1− ε).

(b) If (HOPE) is not satisfied, then there exists c > 0 such that for any c < c there exists εc > 0
such that for any x∗1 < εc, there exists a shirk-work-shirk equilibrium with shirk-work cutoff
x∗1 and work-shirk cutoff x∗2 close to 1.

Proof. See Appendix D. ¤

Theorem 6(a) states that with (HOPE) and small costs, the firm works at all low and intermedi-
ate levels of reputation. Any such equilibrium gives rise to similar value functions and reputational
dynamics; we therefore consider such equilibria to be essentially identical and interpret Theorem
6(a) as essential uniqueness of equilibrium under (HOPE).

For an intuition, first note that reputational dividends and the value of quality are bounded
below on any interval [ε, 1− ε], so when costs are small the firm prefers to invest at all interme-
diate levels of reputation. If the firm is believed to work for all reputations above some x∗1 ≤ ε,
these beliefs induce a strong positive reputational drift at low levels of reputation and investment
incentives are strongly influenced by the high reputational dividends around x ≈ 1/2, even if the
firm’s current reputation is at x∗1. Under (HOPE) a firm with reputation just below x∗1 has a
non-zero chance of seeing its reputation increase above x∗1, so its investment incentives are also
bounded below by these high dividends.

If (HOPE) is violated, then Theorem 6(b) states that the work-shirk equilibrium coexists with
a continuum of shirk-work-shirk equilibria. In such an equilibrium, a firm with a low reputation is
trapped in the shirk-region [0, x∗1] from which it cannot escape because adverse equilibrium beliefs
dominate the weak effects of market learning. A firm with reputation above x∗1 to the contrary
expects the favorable equilibrium beliefs to increase its reputation to intermediate levels where
dividends are high. Divergent reputational drift at the shirk-work cutoff creates a discontinuity
in the value function that incentivizes investment above the cutoff but not in the shirk-region
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just below. Investment incentives are then greatest just above the shirk-work cutoff where the
discontinuity in the value functions leads to large reputational dividends. Such a shirk-work-shirk
equilibrium captures the idea that a reputable firm (with reputation at or above the high, work-
shirk cutoff) has low investment incentives and becomes complacent; when it is hit by bad news
signals (and its reputation drops towards the low, shirk-work cutoff) it is put in the ‘hot-seat’
where one more breakdown would finish it off. In such an equilibrium a firm that fails once fights
for its survival, but a firm that fails repeatedly gives up.

To formally construct shirk-work-shirk equilibria, we first choose the lower, shirk-work cutoff
low enough so as to discourage work in the shirk-region [0, x∗1] and then reapply the arguments
in the proof of Theorem 5(a) to prove existence of the upper, work-shirk cutoff with the required
properties.16

The case of perfect bad news learning is the limit of imperfect bad news learning processes
as µH → 0. Despite the apparent conflict between shirk-work equilibria in Theorem 3 and work-
shirk equilibria in Theorem 5 the equilibria under perfect bad news are approximated by equilibria
under imperfect bad news. The main difference is that perfect bad news learning allows for work
at the very top, while equilibrium under imperfect learning requires shirking at the top as market
learning and dividends disappear at x = 1. However, as µH → 0 and imperfect learning becomes
perfect, dividends just below x = 1 increase and the shirk-region at the top vanishes continuously.

At the bottom, the results for perfect and imperfect bad news learning are virtually identical.
For perfect bad news, condition (HOPE) is equivalent to µL > λ. If (HOPE) fails and costs
are small, there is a multiplicity of equilibria; this is established by Theorem 6(b) for imperfect
signals, and by Theorem 3(d) for perfect signals. If (HOPE) holds and costs are small, Theorem
6(a) states that the firm works on (0, 1− ε) under imperfect learning; Figure 4(b) together with
equation (4.7) implies that the firm works on (0, 1] under perfect learning.17

6 Conclusion

This paper studies the moral hazard problem of a firm that produces experience goods and controls
quality through its investment choice. Investment is incentivized by consumers’ learning about
product quality which feeds into the firm’s reputation and future revenue.

The key feature distinguishing our paper from classical models of reputation and repeated
games is that we model product quality as a function of past investments rather than current

16The above analysis relies on the assumption of low costs c to ensure work for intermediate reputations x ∈
[ε, 1− ε]. Shirk-work-shirk equilibria may also exist when costs are higher.

17However we would not say that the full work equilibrium under perfect bad news is ‘essentially unique’ because
there is also an equilibrium where the firm shirks at x = 0. Behavior at 0 does not matter for imperfect learning
because the reputation never reaches 0, but it does matter in the case of perfect bad news learning.
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effort. This capital-theoretic model of persistent quality seems realistic: The current state of
General Motors is a function of its past hiring policies, investment decisions and reorganisations,
all of which are endogenous and have lasting effects on quality. The model also yields new economic
insights: When the market learns quality via breakthroughs of high quality products, a high-
reputation firm runs down its quality and reputation, while a low-reputation firm keeps investing
to achieve a breakthrough. Conversely, when the market learns quality via breakdowns of low
quality products, a low-reputation firm has weak incentives to invest, while a high reputation firm
keeps investing to protect its reputation.

There are many interesting ways to extend this model to capture additional important aspects
of firm reputation. In the working paper version (Board and Meyer-ter-Vehn (2010b)) of this
paper, we study more general imperfect learning processes that can contain a finite number of
imperfect Poisson signals and a Brownian signal, where firm quality determines the drift of the
process. Theorems 1, 5, and 6 extend to this more general class of learning processes and the
condition for uniqueness (HOPE) is satisfied if there exists at least one good news Poisson signal
or a non-trivial Brownian signal. In a companion paper (Board and Meyer-ter-Vehn (2010a)),
we suppose the firm faces a cost of remaining in the industry and goes out of business when its
continuation value drops to zero. We then investigate the investment incentives of a firm that is
about to exit. We find that a firm that is ignorant of its own quality stops investing and coasts
into liquidation when its life-expectancy is short, while a firm that does know its own quality may
fight until the bitter end.

Beyond firm reputation, we hope that our model will prove useful in other fields. In corporate or
international finance, where default signals bad news about a borrower, the shirk-work equilibria
generate endogenous credit-traps. In political economy, where a scandal is bad news about a
politician, the divergent dynamics imply that a politician who is caught will cheat even more,
whereas a lucky politician will become more honest. And in personnel economics, our model
predicts that in ‘superstar markets’, where agents are judged by their successes, performance
tends to be mean-reverting.
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A Proofs from Sections 2 and 3

A.1 Proof of Lemma 1

We first consider a work-shirk equilibrium and assume λ ≥ µ; this implies that reputational
drift is convergent at the work-shirk cutoff x∗, and there exists a time T > 0 after which rep-
utation has evolved to x∗ with positive probability from any initial reputation x0 ∈ [0, 1], i.e.
Prx0 (xT = x∗) = α > 0. Let Fn,ν (·) be the cdf. of xnT conditional on xνT = x∗ and let
Fn (x) = α

∑n
ν=0 (1− α)ν Fn,ν (x) be a finite geometric sum of these distributions of xnT , with

the largest weight α on the distribution Fn,0 conditioning on x0 = x∗ and the smallest weight
α (1− α)n on the distribution Fn,n = Ix∗ which is just an atom of size one at x∗.

Fix any x0 ∈ [0, 1] and let t ≥ (n + 1)T . We argue that for any x ∈ [0, 1]

|Pr (xt ≤ x)− Fn (x)| ≤ (1− α)n+1 . (A.1)

To do so, we first exploit the definition of α and T to write the distribution of xt−nT as a convex
combination αIx∗+(1− α) H0 of an atom of size α at x∗ and some residual distribution H0. Rolling
time forward by T , we write the distribution of xt−(n−1)T as αF1,0 + (1− α) (αF1,1 + (1− α) H1),
where the residual distribution H1 has evolved into an atom αF1,1 = αIx∗ and a residual distribu-
tion H1. By induction, we write the distribution of xt as

α
n∑

ν=0

(1− α)ν Fn,ν + (1− α)n+1 Hn = Fn + (1− α)n+1 Hn

for some residual distribution Hn, implying (A.1). Thus for any n < m the distribution of xmT

is (1− α)n+1-close to Fn and (1− α)m+1-close to Fm, so the sequence (Fn)n∈N is Cauchy in the
complete metric space of increasing functions from [0, 1] to [0, 1] equipped with the sup-norm; thus
(Fn)n∈N converges to some F = limFn. By the above argument, reputation xt converges to F in
distribution for any initial x0. This completes the proof for work-shirk equilibria with λ ≥ µ.

For work-shirk equilibria when λ < µ as well as full work and full shirk equilibria, reputation
xt never reaches the stationary point x̂, i.e. where d (x̂) = 0. Thus, for any time T there is no
single reputation level x that is attained at time T with positive probability. To extend our proof
to these cases, we remark that it is immaterial to our argument that the distribution Ix∗ , which
is reached after time T with probability α, is a point distribution. Even if the stationary point
x̂ of the reputational drift is never reached, there exists a cdf G on [0, 1] together with a time T

and a probability α > 0, such that the distribution of xT conditional on any x0 can be written as
αG + (1− α) H for some residual distribution H. We then replace the point distribution Ix∗ with
the general distribution G in the above construction of F to conclude.
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A.2 Proof of Theorem 1

Fix any candidate equilibrium η. For δ > 0 small but finite, we expand firm value into current
profits and the continuation value

Vθ (x0) = Ex0,θ0=θ

[∫ ∞

0
e−rt (xt − cη (xt)) dt

]

= Ex0,θ0=θ

[∫ δ

0
e−rt (xt − cη (xt)) dt

]
+ Ex0,θ0=θ

[
e−rδVθδ

(xδ)
]

=
∫ δ

0

(
x∅t − cη

(
x∅t

))
dt

︸ ︷︷ ︸
profit in [0,δ]

+e−rδ

∫ δ

0
λe−λ(δ−t)

(
η

(
x∅t

)
VH

(
x∅δ

)
+

(
1− η

(
x∅t

))
VL

(
x∅δ

))
dt

︸ ︷︷ ︸
cont. value after λ-shock

+e−rδe−λδ Ex0,θδ=θ [Vθ (xδ)]︸ ︷︷ ︸
cont. value w.o. λ-shock

+O
(
δ2

)
,

where the O
(
δ2

)
-term captures the O (δ)-possibility of a signal in the first two terms which are

themselves of order δ.
Taking differences VH (x0)−VL (x0), current profits and continuation values after a technology

shock cancel, and the value of quality can be written as a (discrete) reputational dividend plus its
continuation value:

∆ (x0) = VH (x0)− VL (x0)

= e−(r+λ)δ
(
Ex0,θδ=H [VH (xδ)]− Ex0,θδ=L [VL (xδ)]

)
+ O

(
δ2

)

= e−(r+λ)δ
(
Ex0,θδ=H [VH (xδ)]− Ex0,θδ=L [VH (xδ)] + Ex0,θδ=L [VH (xδ)]− Ex0,θδ=L [VL (xδ)]

)
+ O

(
δ2

)

= e−(r+λ)δDH,δ (x0) + Ex0,θδ=L [∆ (xδ)] + O
(
δ2

)
.

where DH,δ (x0) = Ex0,θδ=H [VH (xδ)]−Ex0,θδ=L [VH (xδ)] is the reputational dividend, and ∆ (xδ) =
VH (xδ)− VL (xδ) the continuation value of quality.

Iterating this calculation for ∆ (xδ) we get:

∆ (x0) =
∞∑

n=0

e−(r+λ)(n+1)δEx0,θnδ=L

[
DH,δ (xnδ) + O

(
δ2

)]
. (A.2)

To compute the reputational dividend, we neglect the O
(
δ2

)
-possibility of a double signal in

[0, δ] and let xt
δ be reputation at time δ conditional on a signal at time t ∈ [0, δ]. Then either term
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in the dividend is given by:

Ex0,θδ=θ [VH (xδ)] = e−µθδVH(x∅δ ) +
∫ δ

0
e−µθtµθVH

(
xt

δ

)
dt + O

(
δ2

)

= VH(x∅δ ) + µθ

∫ δ

0

(
VH

(
xt

δ

)− VH(x∅δ )
)
dt + O

(
δ2

)

= VH(x∅δ ) + µθ

∫ δ

0

(
VH

(
j
(
x∅t

))− VH(x∅t )
)
dt + O

(
δ2

)
.

In this calculation, the second line uses the approximations e−µθδ = 1− µθδ + O
(
δ2

)
and e−µθt =

1 + O (δ). The third line uses the approximations VH

(
xt

δ

)
= VH

(
j
(
x∅t

))
+ O (δ) and VH(x∅δ ) =

VH(x∅t ) + O (δ).
Now the difference is easy to compute

DH,δ (x0) = Ex0,θδ=H [VH (xδ)]− Ex0,θδ=L [VH (xδ)]

=
∫ δ

0
µ

(
VH

(
j
(
x∅t

))− VH(x∅t )
)
dt + O

(
δ2

)
.

We reintroduce the O
(
δ2

)
-possibility of double signals in [0, δ] :

DH,δ (x0) = Ex0,θδ=L

[∫ δ

t=0
µ (VH (j (xt))− VH(xt)) dt

]
+ O

(
δ2

)
.

The same holds for the reputational dividend evaluated at later times:

e−(r+λ)(n+1)δDH,δ (xnδ) = Exnδ,θ(n+1)δ=L

[∫ (n+1)δ

t=nδ
e−(r+λ)tµ (VH (j (xt))− VH(xt)) dt

]
+ O

(
δ2

)
,

so that plugging back into equation (A.2), and taking the limit δ → 0, we get

∆ (x0) =
∞∑

n=0

Ex0,θnδ=L

[
Exnδ,θ(n+1)δ=L

[∫ (n+1)δ

t=nδ
e−(r+λ)tµ (VH (j (xt))− VH(xt)) dt

]
+ O

(
δ2

)
]

= Ex0,θ∞=L

[∫ ∞

t=0
e−(r+λ)tµ (VH (j (xt))− VH(xt)) dt

]
,

as required.
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B Perfect Poisson Learning

In this appendix we solve the perfect learning specifications of Section 4 explicitly by calculating
equilibrium value functions in closed form. This approach highlights the analytic tractability of
these learning specifications and delivers a more explicit understanding of the value functions and
the value of quality. Some of the derived expressions are also used in the proofs of Section 4.

We assume throughout that λ ≥ |µ|, so that the direction of the reputational drift is determined
by market beliefs.

B.1 Perfect Good News

Shirk-region, above the cutoff x ≥ x∗. Suppose x0 = 1 and let x∅t solve the law of motion
given by the drift equation (4.1). For x > x∗, the firm strictly prefers to shirk; for x = x∗ the firm
is indifferent, and we assume it shirks. As a result, x∅t is strictly decreasing until it reaches x∗ and
stays there. Conditional on low quality, reputational dynamics are deterministic and firm value is
given by:

VL(x∅s ) =
∫ ∞

t=0
e−rtx∅t+sdt (B.1)

With a high quality product dynamics are more complicated, because the reputation jumps to one
at a breakthrough and quality disappears at a technology shock:

VH(x∅s ) =
∫ ∞

t=0
e−(r+λ+µ)t[x∅t+s + λVL(x∅t+s) + µVH(1)]dt

=
∫ ∞

t=0
x∅t+se

−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt +

µ

r + λ + µ
VH(1), (B.2)

where we rewrote the λVL(x∅t+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ+µ)tλVL(x∅t+s)dt =

λ

λ + µ

∫ ∞

t=0
x∅t+se

−rt[1− e−(µ+λ)t]dt.

We evaluate (B.2) at x∅s = 1, and rearrange

VH(1) =
r + λ + µ

r + λ

∫ ∞

t=0
x∅t e−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt.
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The value of quality is the difference between the value functions (B.2) and (B.1)18

∆(x∅s ) =
µ

r + λ

∫ ∞

t=0
x∅t e−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt− µ

λ + µ

∫ ∞

t=0
x∅t+se

−rt
[
1− e−(µ+λ)t

]
dt.

(B.3)
When x∅s = x∗, we get

∆(x∗) =
µ

r + λ

∫ ∞

t=0
(x∅t − x∗)e−rt

[
λ

λ + µ
+

µ

λ + µ
e−(µ+λ)t

]
dt. (B.4)

Quality at x∗ is valuable because of the possibility that reputation jumps from x∗ to x = 1. The
discounted probability of this event is captured by the µ/ (r + λ)-term, while the terms in brackets
capture the possibilities of technology shocks and breakthroughs as x∅t descends from 1 to x∗.

Work-region, below the cutoff x ≤ x∗. For this case suppose the reputational trajectory x∅t
starts at x0 = 0. The firm weakly prefers to work and we assume it always does, so x∅t is strictly
increasing until it reaches x∗. With a high quality product, the firm’s reputation drifts up until
x∅t = x∗, or a breakthrough hits:

VH(x∅s ) =
∫ ∞

t=0
e−(r+µ)t[(x∅t+s − c) + µVH(1)]dt. (B.5)

With a low quality product, the firm’s reputation drifts up until x∅t = x∗, or a λ-shock hits:

VL(x∅s ) =
∫ ∞

t=0
e−(r+λ)t[(x∅t+s − c) + λVH(x∅t+s)]dt

=
∫ ∞

t=0
(x∅t+s − c)

[
λ

λ− µ
e−(r+µ)t − µ

λ− µ
e−(r+λ)t

]
dt +

λ

r + λ

µ

r + µ
VH(1), (B.6)

where we rewrote the λVH(x∅t+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ)tλVH(x∅t+s)dt =

λ

λ− µ

∫ ∞

t=0
(x∅t+s − c)e−rt(e−µt − e−λt)dt +

λ

r + λ

µ

r + µ
VH(1).

The value of quality is the difference between the value functions (B.5) and (B.6):

∆(x∅s ) =
r

r + λ

µ

r + µ
VH(1)− µ

λ− µ

∫ ∞

t=0
(x∅t+s − c)e−rt(e−µt − e−λt)dt

The first term captures firm value after the breakthroughs and the second term captures the
opportunity cost of the breakthroughs, i.e. firm value absent a breakthrough.

18Equivalently, one could compute the reputational dividend from the value functions and substitute it into the
dividend formula for the value of quality (3.3).
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B.2 Perfect Bad News

Work-region, above the cutoff x > x∗. First assume that x∗ > 0, so that VL(0) = 0, and
assume η (x∗) = 1. Define the reputational trajectory x∅t by the initial condition x0 = x∗ the drift
equation (4.3). Then, x∅t is strictly increasing and converges to 1. Conditional on high quality,
reputational dynamics are deterministic and firm value equals

VH(x∅s ) =
∫ ∞

t=0
e−rt(x∅t+s − c) dt. (B.7)

With a low quality product, dynamics are more complicated because the reputation jumps to 0 at
a breakdown and quality improves at a λ-shock,

VL(x∅s ) =
∫ ∞

t=0
e−(r+λ+µL)t[(x∅t+s − c) + λVH(x∅t+s) + µLVL(0)] dt.

=
∫ ∞

t=0
e−rt(x∅t+s − c)

[
λ

λ + µL
+

µL

λ + µL
e−(λ+µL)t

]
dt, (B.8)

where we rewrote the λVH(x∅t+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ+µL)tλVH(x∅t+s) dt =

λ

µL + λ

∫ ∞

t=0
e−rt(x∅t+s − c)[1− e−(λ+µL)t] dt.

The value of quality is the difference between the value functions (B.7) and (B.8),

∆(x∅s ) =
µL

λ + µL

∫ ∞

t=0
e−rt(x∅t+s − c)(1− e−(λ+µL)t) dt. (B.9)

Quality insures the firm against the loss of reputation when the breakdown hits before the λ-shock.

Shirk-region, below the cutoff x < x∗. Next, assume η (x∗) = 0 and again define x∅t by
the initial condition x0 = x∗ the drift equation (4.3) with the difference that now x∅t is strictly
decreasing and converges to zero. With a low quality product, reputation is deterministic and firm
value equals

VL(x∅s ) =
∫ ∞

t=0
e−(r+µL)tx∅t+s dt. (B.10)

With a high quality product, quality disappears at a λ-shock and the firm’s value function is

VH(x∅s ) =
∫ ∞

t=0
e−(r+λ)t[x∅t+s + λVL(x∅t+s)] dt.

=
∫ ∞

t=0
x∅t+s

[
λ

λ− µL
e−(r+µL)t − µL

λ− µL
e−(r+λ)t

]
dt, (B.11)
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where we rewrote the λVL(x∅t+s)-term by changing the order of integration:

∫ ∞

t=0
e−(r+λ)tλVL(x∅t+s) =

λ

λ− µL

∫ ∞

t=0
e−rtx∅t+s(e

−µLt − e−λt)dt.

The value of quality is the difference of the value functions (B.11) and (B.10):

∆(x∅s ) =
µL

λ− µL

∫ ∞

t=0
e−rtx∅t+s(e

−µLt − e−λt) ds. (B.12)

Again, quality insures the firm against the loss of reputation when the breakdown hits before the
λ-shock.

Full work. Suppose the firm always works. Let x∅t solve the drift equation with initial condition
x0 = 0. The value function for the high quality firm is given by (B.7). The value function of the
low quality firm becomes

VL(x∅s ) =
∫ ∞

t=0
e−rt(x∅t+s − c)

[
λ

λ + µL
+

µL

λ + µL
e−(λ+µL)t

]
dt +

µL

r + λ + µL
VL(0). (B.13)

Setting s = 0, we obtain

VL(0) =
r + λ + µL

r + λ

∫ ∞

t=0
e−rt(x∅t − c)

[
λ

λ + µL
+

µL

λ + µL
e−(λ+µL)t

]
dt.

The value of quality is the difference between (B.7) and (B.13):

∆(x∅s ) =
µL

λ + µL

∫ ∞

t=0
x∅t+se

−rt
[
1− e−(λ+µL)t

]
dt− µL

r + λ

∫ ∞

t=0
x∅t e−rt

[
λ

λ + µL
+

µL

λ + µL
e−(µL+λ)t

]
dt.

where cost terms cancel since both high- and low quality firms always work. This equation parallels
equation (B.3) in the good-news case. When s = 0, this becomes

∆(0) =
µL

λ + µL

∫ ∞

t=0
e−rtx∅t

[
r

r + λ
− r + µL + λ

r + λ
e−(λ+µL)t

]
dt. (B.14)

Here, the value of quality realizes when a breakdown hits before the first λ-shock.

B.3 Proof of Theorem 3(b) and (d)

We now formally establish equilibrium existence and multiplicity. This addresses the gaps left
open by the arguments in the proof sketch of Theorem 3(b) and (d).

Lemma 5 Fix x∗ > 0. If λ∆x∗,1(x∗) ≥ c, then:

(M1) ∆x∗,1(·) is strictly increasing on [0, 1].
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If additionally x∗ ∈ [x̂, 1] so that ∆x∗,0(x∗) is well-defined, then:

(M0) ∆x∗,0(·) is strictly increasing on [0, 1].

(R) ∆x∗,0(x∗) < ∆x∗,1(x∗).

Proof. We first show that value functions are strictly increasing when λ∆x∗,1(x∗) ≥ c. For
x0 ∈ [x∗, 1] value functions Vθ (x0) = E

[∫
e−rt (xt − cηt) dt

]
are strictly increasing in x0 be-

cause revenue xt is increasing in x0 and cost cηt is independent of x0. Then also ∆x∗,η∗ (x0) =∫
e−(r+λ)tµLVL

(
x∅t

)
dt is strictly increasing in x0 on [x∗, 1] and the firm prefers to work at all

x ∈ [x∗, 1].
To show that value functions are increasing on all of [0, 1], we can now re-use the proof of

Lemma 3 that establishes strict monotonicity for equilibrium value functions. Consider a ‘high’
firm with initial reputation x′0 and a ‘low’ firm that starts at x0 < x′0. The high firm works weakly
more than the low firm and prefers to do so by the argument above. Thus the high firm’s value in
the candidate equilibrium is greater than the value it could get from mimicking the low firm, which
in turn is greater than the low firm’s value. Therefore value functions are increasing in reputation.

Then, equation (4.4) implies that the value of quality ∆x∗,η∗ (·) is strictly increasing in x, and
that ∆x∗,0 (x∗) < ∆x∗,1 (x∗). ¤

Lemma 6 (C1) ∆x∗,1(x∗) is continuous in x∗ on (0, 1] (but may be discontinuous at x∗ = 0).

(C0) ∆x∗,0(x∗) is continuous in x∗ on [x̂, 1].

Proof. Part (C1). We first show that future reputation xt is continuous in the cutoff. Let
xt = xt (x∗, ht) be reputation at time t when x0 = x∗, the public history is given by ht and market
beliefs are shirk-work with cutoff x∗. Absent a breakdown, i.e. for the empty history, xt drifts
from x∗ towards 1 if η∗ = 1, and drifts towards x̂ if η∗ = 0. At a breakdown, reputation xt drops
to zero and stays there. In both cases xt (x∗, ht) is continuous in x∗.

Firm value at the cutoff Vθ,x∗,1 (x∗) = E
[∫

e−rt (xt − cηt) dt
]

and the value of quality ∆x∗,1 (x∗)
are then continuous in x∗ as well: revenue xt is continuous in x∗ and cost cηt is independent of
x∗. At x∗ = 0, future reputation, firm value and the value of quality are generally not continuous:
After a breakdown, reputation is trapped at zero for all x∗ > 0, but not when x∗ = 0 and η∗ = 1.

Part (C0) follows by the same argument; with η (x∗) = 0, future reputation, firm value, and
the value of quality at the cutoff are also continuous at x∗ = 0 as reputation after a breakdown is
trapped at zero even if x∗ = 0. ¤

Sufficiency on indifference conditions (4.6) and (4.7). Lemmas 5 and 6 imply that these
conditions are actually sufficient for a shirk-work equilibrium with cutoff x∗ and η(x∗) = 1. Con-
dition (4.6) states that the firm is indifferent at the cutoff, i.e. if λ∆x∗,1 (x∗) = c. Then by (M1)
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investment incentives are strictly increasing and the firm indeed prefers to shirk below the cutoff
and to work above.

Condition (4.7) states that at the shirk-work cutoff, the firm prefers to shirk if it is believed to
be shirking and it prefers to work if it is believed to be working, i.e. λ∆x∗,0(x∗) ≤ c ≤ λ∆x∗,1(x∗)
for some x∗ ≥ x̂ with x∗ > 0. Then by (M1) investment incentives are strictly increasing and the
firm indeed prefers to work above x∗. To show that the firm prefers to shirk below x∗ note that
∆x∗,0(·) = ∆x∗,1(·) on [0, x∗) since the firm’s reputation is trapped in [0, x∗) and never reaches x∗.
As λ∆x∗,0(x∗) ≤ c and ∆x∗,0(·) is increasing by (M0), we get λ∆x∗,1(x) < λ∆x∗,0(x∗) < c for all
x ∈ [0, x∗) as desired.

Equilibrium existence, Theorem 3(b). Property (C1) implies that one of the following must
be true:

λ∆x∗,1 (x∗)





> c for all x∗ ∈ (0, 1],
= c for some x∗ ∈ (0, 1],
< c for all x∗ ∈ (0, 1].

(B.15)

In the first case, shirk-work with cutoff x∗ = 0 and η (x∗) = 0 is an equilibrium. With initial
reputation x0 = 0, reputation is trapped at 0 and investment incentives vanish, i.e. λ∆0,0(0) =
0 < c, so the firm prefers to shirk at x = 0. With initial reputation x0 > 0 in the work-region,
reputation drifts up and xt is contained in {0} ∪ [x0, 1]. Therefore, we have λ∆0,0(x) = λ∆x,1(x)
for all x > 0. By the first line of (B.15) we have λ∆x,1(x) > c for all x > 0, and the firm prefers
to work at all x > 0.

In the second case, λ∆x∗,1 (x∗) = c implies that (4.6) is satisfied, and shirk-work with cutoff
x∗ and η(x∗) = 1 is an equilibrium.

In the third case, we have λ∆x∗,1 (x∗) < c for x∗ = 1, so full shirk is an equilibrium. To
formally prove this, fix x∗ = 1 and consider c′ < c that solves λ∆x∗,1(x∗) = λ µL(1−c′)

r(r+λ+µL) = c′. If
cost was equal to c′, then by (M1) we would have λ∆x∗,0(x∗) < λ∆x∗,1(x∗) = c′ < c. By definition
of full shirk, value functions and ∆x∗,0(x∗) do not depend on c, so the firm prefers to shirk; thus
full shirk is an equilibrium.

Equilibrium multiplicity, Theorem 3(d). If λ ≥ µL, then x̂ ≤ 0 and we need to show that
(4.7) is satisfied for a continuum of x∗. Reconsider the three cases listed in (B.15). Assumption
(4.5) rules out the third case. In the second case, (4.5) together with (C1) imply that we have
λ∆x∗,1 (x∗) = c for some x∗ ∈ (0, 1). Then property (R) implies λ∆x∗,0 (x∗) < c. As ∆x∗,1 (x∗) is
increasing in x∗,19 and ∆x∗,0 (x∗) is continuous in x∗ by (C0), condition (4.7) holds for for all x in
an interval [x∗, x∗ + ε]. In the first case of (B.15) we have λ∆x∗,1 (x∗) > c for all x∗ ∈ (0, 1]. As

19To formally show this, consider ∆x∗,1 (x∗) =
∫

e−(r+λ)tµLVL

(
x∅t

)
dt and note that VL

(
x∅t

)
is increasing on

[x∗, 1] and independent of x∗ as long as x∗ < x∅t .
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∆x∗,0 (x∗) = 0 < c for x∗ = 0, and property (C0) ensures continuity of ∆x∗,0 (x∗), condition (4.7)
holds for for all x∗ in an interval (0, ε].
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C Imperfect Poisson Learning: Proof of Theorem 5(a)

In Section C.1 we perform a change of variables by writing reputation as the log-likelihood ratio
of high quality `. In Section C.2 we provide some preliminary results about work-shirk candidate
equilibria. We then show that for sufficiently small c there exists a work-shirk candidate equilibrium
with cutoff `∗ such that:

(a) At the cutoff the firm is indifferent: λ∆`∗(`∗) = c (Section C.3, Lemma 10),

(b) Below the cutoff the firm prefers to work: λ∆`∗(`) > c for ` < `∗ (Section C.4, Lemma 13),

(c) Above the cutoff the firm prefers to shirk: λ∆`∗(`) < c for ` > `∗ (Section C.5, Lemma 14).

C.1 Log-likelihood Ratio Transformation

For most of the technical proofs in the appendix we represent reputation not by the probability of
high quality x = Pr (θ = H), but by its log-likelihood ratio `(x) = log(x/(1−x)) ∈ R ∪ {−∞,∞}.
The relevant transformation functions are:

`(x) = log
x

1− x
x (`) =

e`

1 + e`

dx

d`
=

e`

(1 + e`)2
= x (1− x)

We adopt a physics approach to notation by simply writing Vθ (`) for the value of the firm in
`-space, and similarly for all other functions of reputation.

Reputational Dynamics: The advantage of this transformation is that Bayesian updating,
equations (2.2) and (2.3), are linear in `-space. At a signal, reputation jumps from `t− to `t =
j (`t−) = `t− + log(µH/µL). Absent a signal, the reputational drift consists of a constant term
−µ induced by Bayesian learning and a term induced by equlibrium beliefs that now includes the
derivative d`/dx:

d(`) =
d`

dx
λ (η̃ − x)− µ = λ

(
1 + e`

)2

e`

(
η̃ − e`

1 + e`

)
− µ =

{
λ

(
1 + e−`

)− µ for η̃ = 1,

−λ
(
1 + e`

)− µ for η̃ = 0.
(C.1)

In a work-shirk candidate equilibrium with high cutoff `∗ À 0, the drift at high reputations ` À 0
is approximately constant equal to λ−µ below the cutoff and approximately −∞ above the cutoff.

C.2 Work-Shirk Candidate Equilibria

We now provide some preliminary results about value functions and reputational dynamics in work-
shirk candidate equilibria that we later draw upon to prove existence of a work-shirk equilibrium.
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As a first step we study how reputation `t = `t (`0, ht, η̃) at time t depends on initial reputation
`0, given history ht and believed investment η̃.20

Lemma 7 In any work-shirk candidate equilibrium with cutoff `∗:

(a) Reputational increments are decreasing:

∂`t

∂`0
(`0, ht, η̃) < 1 for all t > 0.

(b) Suppose the drift is convergent around cutoff `∗. Reputational increments disappear at `∗: If
`T = `∗ for some T then:

∂`t

∂`0
(`0, ht, η̃) = 0 for all t > T

(c) Suppose the drift is negative around cutoff `∗. Reputational increments shrink at `∗: If
`T = `∗ for some T then:

∂`t

∂`0
(`0, ht, η̃) < e−`∗µ/λ for all t > T

Proof. Consider the reputational trajectories `t, `
′
t originating at `0 < `′0. Signals shift `t and

`′t by the same amount, while the drift (C.1) shrinks `′t − `t at rate λ(1 + e−`′t) − λ
(
1 + e−`t

) ≈
−λe−`t (`′t − `t) < 0 in the work-region and similarly at rate −λe`t (`′t − `t) < 0 in the shirk-
region. This implies that the partial derivative exists and proves part (a). Part (b) follows because
the drift at the cutoff equals 0. Part (c) follows because the reputational drift decelerates from∣∣−λ

(
1 + e`∗)− µ

∣∣ > λe`∗ to
∣∣λ (

1 + e−`∗)− µ
∣∣ < µ at the cutoff. So when the trajectory `t hits

`∗ the reputational increment decreases by the above factor and by part (a) it never grows. ¤

Next, we use these facts about reputational dynamics to provide some regularity results about
value functions in a work-shirk candidate equilibrium and an explicit formula for the marginal
value of reputation.

Lemma 8 In any work-shirk candidate equilibrium with cutoff `∗:

(a) Value Vθ (`) is continuous in reputation `.

(b) At the cutoff the value of quality ∆`∗(`∗) is strictly positive.

(c) If the firm is indifferent at the cutoff `∗, i.e. λ∆`∗ (`∗) = c, value functions are differentiable
with derivative:

V ′
θ (`) = Eθ0=θ

[∫ ∞

t=0
e−rt e`t

(1 + e`t)2
∂`t

∂`0
(`, ht, η̃)dt

]
> 0 for all ` ∈ R. (C.2)

20Actual investment η and quality θt affect reputation `t only through the history ht.
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Lemma 8(c) has the flavor of the envelope theorem: when the firm’s first-order condition holds
at the cutoff, then a change in initial reputation only affects its payoff through the reputational
evolution. A firm with a lower initial reputation works more, leading to a gain of ∆(`) when a
technology shock hits. This gain is exactly offset by the extra cost born by the firm. The marginal
value of reputation V ′

θ (`) is thus determined solely by the ‘durability’ of the reputational increment
`′t − `t.

Proof. Like in Lemma 3 fix initial reputations ` < `′ of a ‘low’ and a ‘high’ firm and let `t =
`t (`, ht, η̃) and `′t = `t (`′, ht, η̃) be as in Lemma 7. Let η′t = η′t (ht) = η (`t (`′, ht, η̃)) be investment
of the high firm at time t expressed in a non-Markovian manner directly as a function of the public
history ht. We decompose the incremental value of reputation as follows:

Vθ(`′)− Vθ (`) = [Vθ(`′)− Vθ,η′(`)] + [Vθ,η′(`)− Vθ(`)] (C.3)

where Vθ,η′(`) is the value of the low firm that mimics the high firm by adopting the non-Markovian
investment strategy η′.

The first term in (C.3) is the benefit of the high firm’s reputational advantage when the low
firm mimics the high firm. It is determined by the derivative of future reputation with respect to
current reputation:

Vθ(`′)− Vθ,η′(`) = Eθ0=θ,η′

[∫
e−rt

(
x

(
`t(`′, ht, η̃)

)− x (`t (`, ht, η̃))
)
dt

]

This term is always positive. Taking the limit `′ → ` and applying the chain rule gives rise to
equation (C.2).

The problem with analyzing the second term in (C.3) is that quality and reputation drift apart
due to the different investment plans. To overcome this problem, we first write the low firm’s
value Vθ(`) as an expectation of future profits conditional on the firm’s quality being controlled
by investment plan η′.

Vθ(`) = Eη,η̃

[∫ ∞

0
e−rt (x (`t)− cη (`t)) dt

]

= Eη′,η̃

[∫ ∞

0
e−rt

(
x (`t)− cη (`t) +

(
η(`t)− η

(
`′t

))
λ∆(`t)

)
dt

]

= Eη′,η̃

[∫ ∞

0
e−rt

(
x (`t)− cη

(
`′t

)
+

(
η(`t)− η

(
`′t

))
(λ∆(`t)− c)

)
dt

]

= Vθ,η′(`) + Eη′,η̃

[∫ ∞

0
e−rt

(
η(`t)− η

(
`′t

))
(λ∆(`t)− c) dt

]

where `t = `t (`, ht, η̃) and `′t = `t(`′, ht, η̃). The key step is line 2: Whenever the low firm invests
according to η, i.e. η(`t) = 1, its continuation value increases by λ∆(`t) relative to the low firm
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that mimics the high firm and shirks, i.e. η (`′t) = 0. When writing the low firm’s value as future
profits conditional on the less favorable distribution of technology shocks induced by η′, we must
compensate the low firm by capitalizing these forgone benefits. Line 3 rearranges terms, and line
4 highlights that the difference in values is due to the profitability of investing, λ∆(`t)− c, when
the low firm does and the high firm does not, i.e. η(`t)− η (`′t) = 1.

We now show that this difference term is of order O (`′ − `):

∣∣Vθ,η′(`)− Vθ(`)
∣∣ ≤ Eη′,η̃

[∫ ∞

0
e−rt

(
η(`t)− η

(
`′t

)) |λ∆(`t)− c| dt

]

≤ Eη′,η̃

[∫

t:`t≤`∗≤`′t
e−rt |λ∆(`t)− c| dt

]

≤ max
`′′∈[`∗−(`′−`),`∗]

∣∣λ∆(`′′)− c
∣∣ (

`′ − `
)
/λ

The final inequality uses that `′t− `t is decreasing in t by Lemma 7(a), and the rate of decrease
is at least λ whenever `t < `∗ ≤ `′t or `t ≤ `∗ < `′t. This proves that value functions are continuous,
i.e. part (a).

For part (c), we assume λ∆(`∗) = c. By part (a) ∆ is continuous so that max`′′∈[`∗−(`′−`),`∗] |λ∆(`′′)− c|
converges to 0 as `′ → `. Thus, the second term Vθ,η′(`)−Vθ(`) in equation C.3 is of order o (`′ − `).

To prove (b) assume by contradiction that the value of quality is non-positive at the cutoff
∆`∗ (`∗) ≤ 0. Then λ∆`∗(`) < c for ` close to the cutoff `∗, and the second term Vθ,η′(`) − Vθ(`)
is positive. The first term Vθ(`′) − Vθ,η′(`) is positive by construction, so value is increasing in
reputation. This implies that reputational dividends are strictly positive and by Theorem 1, ∆`∗(·)
is strictly positive as well. ¤

Remark 1 If the reputational drift is convergent at cutoff `∗, we can truncate the integral (C.2)
at time T when the reputational evolution hits `∗ by Lemma 7(b). When the reputational drift is
permeable at cutoff `∗ and `∗ À 0, we can essentially do the same by Lemma 7(c).

Finally we establish a slightly different continuity result when the work-shirk cutoff is altered
at the same time as the firm’s reputation. This result is essential for finding work-shirk candidate
equilibria with indifference at the cutoff. Let Vθ,`∗ (`) be the value of a firm with initial quality θ

and reputation ` in the work-shirk candidate equilibrium with cutoff `∗.

Lemma 9 Across work-shirk candidate equilibria, firm value at the cutoff Vθ,`∗ (`∗) and value of
quality at the cutoff ∆`∗(`∗) are continuous in `∗.

Proof. Consider a ‘low’ firm who has cutoff `∗ and reputation `t starting at `0 = `∗. Compare
this to a ‘high’ firm who has cutoff `∗ + ε and reputation `′t starting at `′0 = `∗ + ε.
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Let τ be the first time that quality differs for these firms. We first show that 0 ≤ `′t − `t ≤ ε

for t < τ . The first inequality holds for t = 0 and then `′t remains above `t because it enjoys more
favorable beliefs while the jump at a signal does not change `′t − `t. The second inequality is due
to the fact that whenever `′t− `t = ε either both firms work or both firms shirk. In either case the
proof of Lemma 7 shows that the reputational increment `′t − `t decreases. Hence the two firms’
reputations always converge when they are ε apart, as required.

We next show that until time τ the investment decisions of the two firms are similar. Formally,
we claim that for any δ > 0 and T < ∞, there is a sufficiently small ε = `′0 − `0 such that

rE

[∫ min{τ,T}

0
e−rt

∣∣η′t − ηt

∣∣ dt

]
< δ, (C.4)

where η′t and ηt are investment of the high and low firm at time t. We know from the above that
`′t− `t ∈ [0, ε] for t < τ , and for `′t− `t = ε we have η′t = ηt, unless `′t = `∗ + ε and `t = `∗ in which
case |ηt − η′t| is of order ε. For `′t − `t < ε, we have η′t ≥ ηt with equality unless `t, `

′
t ∈ [`∗, `∗ + ε].

The key step of the argument is that the set of times Ω = {t : `t, `
′
t ∈ [`∗, `∗ + ε], η′t ≥ ηt + δ} where

investment levels differ by more than δ consists of a finite number of short time intervals. The
reason is that for t ∈ Ω the reputational drift differs by d (`′t)− d (`t) = λδ(1 + e`t)2/e`t and thus
the length of an interval of such t is bounded above by ε/ (d (`′t)− d (`t)). Any two such intervals
must be separated by a signal and in expectation there is only a finite number of signals in [0, T ].
This implies equation (C.4).

As ε → 0, the high and the low firm invest at almost the same intensity by equation (C.4), so
for any T and δ, we can choose ε > 0 such that Pr(τ > T ) > 1− δ. Putting this all together,

|Vθ,`∗+ε(`∗ + ε)− Vθ,`∗(`∗)| =
∣∣∣∣E

[∫ ∞

0
e−rt[(x(`′t)− η′tc)− (x(`t)− ηtc)]dt

]∣∣∣∣

≤ E
[∫ T

0
e−rt

∣∣(x(`′t)− η′tc)− (x(`t)− ηtc)
∣∣ dt

]
+ e−rT (1 + c)

r

≤ E
[∫ min{τ,T}

0
e−rt

∣∣(x(`′t)− η′tc)− (x(`t)− ηtc)
∣∣
]

dt + [e−rT + δ]
(1 + c)

r

≤ E
[∫ min{τ,T}

0
e−rt

∣∣x(`′t)− x(`t)
∣∣ dt

]
+ [e−rT + 2δ]

(1 + c)
r

≤
[ε

4
+ e−rT + 2δ

] (1 + c)
r

The first inequality truncates the integral; the second uses the fact that Pr(τ > T ) > 1 − δ; the
third uses (C.4); the last line uses dx/dl = x(1−x) < 1/4. Hence the difference between the value
functions shrinks as ε → 0 and Vθ,`∗(`∗) is continuous in `∗. Thus ∆`∗(`∗) = VH,`∗(`∗)− VL,`∗(`∗)
is continuous in `∗, as required. ¤
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C.3 Indifference at the Cutoff

We now show that for small costs there exists a high cutoff `∗ that satisfies the indifference
condition. Since ∆ and V depend on c, we subscript them with c where useful.

Lemma 10 For every ` ∈ R there exists c (`) > 0 such that for all c∗ < c (`) there exists `∗ > `

such that in the work-shirk candidate equilibrium with cutoff `∗, we have λ∆`∗,c∗ (`∗) = c∗.

Proof. Fix ` ∈ R and consider ∆`,c(`) as a function of c ∈ [0, λ/(r + λ)]. By Lemma 8(b) we have
∆`,c(`) > 0 for all c. Since ∆`,c(`) is continuous in c, it takes on its minimum ∆`,c′(`) > 0 at some
c′.

Let c (`) = λ∆`,c′(`) and fix any c∗ ∈ (0, c (`)). Using the definitions of c′ and c∗,

c∗ < c (`) = λ∆`,c′(`) ≤ λ∆`,c∗(`),

so the firm prefers to work. On the other hand the value of quality vanishes at the top in the
full-work candidate equilibrium

λ∆∞,c∗(∞) = 0 < c∗,

so by continuity of ∆`′,c∗(`′) as a function of `′ ∈ [`,∞], Lemma 9, there exists `∗ ∈ (`,∞) with
c∗ = λ∆`∗,c∗(`∗). ¤

The daunting array of quantifiers in the statement of this lemma guarantees that we can assume
`∗ with c∗ = λ∆`∗,c∗ (`∗) is as large as needed in the upcoming arguments.

C.4 Work at Low Reputations

We show that the firm prefers to work below the cutoff `∗ by studying the marginal value of
reputation V ′

θ (`) in Lemma 11, reputational dividends below the cutoff in Lemma 12, and the
value of quality below the cutoff in Lemma 13.

Lemma 11 Fix any α > 0, `∗ sufficiently large and assume that in the work-shirk candidate
equilibrium with cutoff `∗ the firm is indifferent at the cutoff, i.e. λ∆`∗(`∗) = c. Then the marginal
value of reputation V ′

θ (`) ‘diminishes’ to the right of `∗ :

V ′
θ (`′′)

V ′
θ(`′)

∈ O(e−`∗) for all `′ ∈ [0, `∗ − α] and `′′ ∈ [`∗,∞).

Intuitively, incremental reputation above `∗ is less ‘durable’ because it disappears when repu-
tation `t hits the cutoff `∗ as explained in Remark 1. To formalize this it is useful to define the
cutoff time T (`0) = min {t|`t = `∗}: This is the first time that the reputational dynamics starting

42



at ` reaches the cutoff `∗.

Proof. We argue that V ′
θ(`′) is bounded below by a term of order e−`∗ while V ′

θ (`′′) is of order
e−2`∗ . The key equation is

V ′
θ(`0) = E`0

[∫ ∞

0
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]
≈ E`0

[∫ T (`0)

0
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]

from Lemma 8(c), where we can essentially truncate the integral at the cutoff time T (`0) by
Lemma 7(b) and (c).

For initial reputation below the cutoff `0 = `′ < `∗ − α we truncate the integral at T (`′) to
obtain a lower bound f(`∗ − `′)e`∗/(1 + e`∗)2 for V ′

θ(`′), where the factor f (`∗ − `′) measures the
expected cutoff time. If reputational drift below the cutoff is positive we can choose f to be a
linear and positive function of `∗−`; if reputational drift is negative we can choose f(`∗−`) greater
than a positive constant for all `∗ − ` because reputation is drifting away from the cutoff and can
only reach it after a good news signal arrives.

For initial reputation above the cutoff `0 = `′′ > `∗ the cutoff time satisfies T (`′′) ≤ e−`∗/λ if
no signal arrives. To see this, we revert into x-space where the negative drift in the shirk region
is approximately −λ and the distance from the initial reputation to the cutoff is no more than
1 − x∗ = 1/

(
1 + e`∗). To get an upper bound for V ′

θ(`′′) we expand the integral until a signal
arrives or the work-shirk cutoff is reached:

V ′
θ(`′′) ≤

∫ e−`∗/λ

0
e−rt e`∅t

(1 + e`∅t )2
∂`∅t
∂`0

dt +
µe−`∗

λ
V ′

θ (`∗) + µθ
e−`∗

λ
max

`>j(`∗)

{
V ′

θ (`)
}

.

The first term is the value of the reputational increment while the reputation `∅t is drifting from
`0 = `′′ to `∗. The second term is an upper bound for the continuation value of the reputational
increment once the reputation hits `∗ and the increment decreases by a factor µe−`∗/λ if the drift
around the cutoff is negative, Lemma 7(c) (if the drift at the cutoff is convergent the increment
disappears entirely by Lemma 7(b)). The last term captures the probability of a signal arrival
before e−`∗/λ, times the continuation value in case of the arrival. The continuation values are of
order e−`∗ so that all three terms are of order e−2`∗ . ¤

Lemma 12 Fix any α > 0, `D sufficiently large, `∗ > `D sufficiently large and suppose that in
the work-shirk candidate equilibrium the firm is indifferent at the cutoff, i.e. λ∆`∗(`∗) = c. Then
the reputational dividend Dθ (`) = µ (Vθ (j (`))− Vθ (`)) is strictly decreasing on [`D, `∗−α] in the
good news case, and strictly decreasing on [`D, `∗] in the bad news case.
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Proof. In the good news case we have µ > 0 and j (`) > ` and need to show D′
θ (`) = µ(V ′

θ (j (`))−
V ′

θ (`)) < 0 for all ` ∈ [`D, `∗ − α]. For ` with j (`) ≥ `∗ this follows from Lemma 11.
For ` with j (`) < `∗ we again evaluate the marginal value of reputation with equation (C.2):

V ′
θ(`0) = E`0

[∫ ∞

0
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]
≈ E`0

[∫ T (`0)

0
e−rt e`t

(1 + e`t)2
∂`t

∂`0
dt

]
.

A reputational increment essentially disappears when the trajectory hits the cutoff. The higher
trajectory starting at j (`) hits the cutoff before the lower trajectory starting at `. Thus, we can
restrict attention to t < T (`0) and `t < `∗ in the integral.

As long as `D À 0, the two trajectories `t (`, ht, η̃) and `t (j (`) , ht, η̃) evolve essentially in
parallel at a constant distance of j (`)− ` because ∂`t/∂`0 ≈ 1 by the proof of Lemma 7(a). Then
V ′

θ (`) > V ′
θ (j (`)) follows because e`/(1 + e`)2 ≈ e−` is decreasing in `. This argument actually

shows that the rate of decrease D′
θ (`) is of order (j (`)− `) e−`.

In the bad news case we have µ < 0 and j (`) < ` and need to show D′
θ (j (`)) = µ(V ′

θ (j(`))−
V ′

θ (`)) < 0 for all ` ∈ [`D, `∗]. This follows by the same argument as in the good news case. ¤

Lemma 13 shows that firms with low reputations work. For reputations ` ∈ [`∆, `∗] for some
`∆ defined below, we prove that the firm prefers to work by showing that ∆(`) is decreasing on
[`∆, `∗]. For reputations ` < `∆ the result follows from the closeness of ∆`∗(·) and ∆∞(·).

Lemma 13 Assume that c is sufficiently small, `∗ is sufficiently large, and that in a work-shirk
candidate equilibrium with cutoff `∗ the firm is indifferent at the cutoff, i.e. λ∆`∗(`∗) = c.

(a) If learning is bad news, then λ∆`∗(`) > c for all ` < `∗.

(b) If learning is good news and λ < µ, then λ∆`∗(`) > c for all ` < `∗.

Proof. We first show for both cases that for any `∆ there exists `∗ large and c small, such that
λ∆`∗ (`) < c for all ` < `∆: As `∗ → ∞, ∆`∗(`) converges pointwise to ∆∞(`) for all `. Let
`∗ À `∆. For any ` < `∆, the marginal value of reputation, reputational dividends, and thus the
value of quality, depend on the cutoff `∗ only on trajectories `t that reach `∗. The weight of these
trajectories converges to 0 as `∗ →∞, so the convergence is uniform for ` < `∆.

The function ∆∞ (·) is bounded away from 0 on [−∞, `∆], and so is ∆`∗(`). For small costs c,
we get

λ∆`∗(`) > c for ` ∈ [−∞, `∆],

as required.
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Next we show that ∆`∗ (·) is monotonically decreasing on [`∆, `∗]. To do so, we apply Theorem
1 to write the value of quality as integral over future reputational dividends

∆`∗ (`) = Eθ∞=L

[∫ ∞

0
e−(r+λ)tDH (`t) dt

]

Part (a): Fix `D from Lemma 12 such that the dividend DH (`) is decreasing on [`D, `∗].
Choosing `∆ large enough and `0 ∈ [`∆, `∗], the probability that `t ∈ [`D, `∗] is close to one, and
the claim follows by Lemma 12.

Part (b): Fix α and `D from Lemma 12 such that the dividend DH (`) is decreasing on [`D, `∗−
α]. When λ < µ and `∗ is sufficiently large, then at the cutoff `∗ reputation drifts into the work-
region. Choosing `∆ large enough and `0 ∈ [`∆, `∗], the probability that `t ∈ [`D, `∗ − α] is close
to one, and the claim follows by Lemma 12. ¤

If learning is good news and λ ≥ µ, then Lemma 13 fails. This case is different because the
reputational drift in the work-region below the cutoff is positive, d (`) = λ (1− x)− µx (1− x) >

0, and the shirk-region [`∗,∞] is absorbing. Thus, the high reputational dividends Dθ (`) for
reputation below the cutoff ` < `∗ − α, which are the dominating term in Lemma 13(a) and (b),
are irrelevant in this case. We can further show that actually λ∆`∗(`∗ − ε) < c for all sufficiently
small ε > 0. Thus, for good news learning and λ ≥ µ there is no work-shirk equilibrium when costs
are low, and any equilibrium must involve mixing η (`) ∈ (0, 1) for some interval of reputations.

C.5 Shirk at High Reputations

Lemma 14 Assume that c is sufficiently small, `∗ is sufficiently large, and that in a work-shirk
candidate equilibrium with cutoff `∗ the firm is indifferent at the cutoff, i.e. λ∆`∗(`∗) = c.

(a) If learning is bad news, then λ∆`∗(`) < c for all ` > `∗.

(b) If learning is good news and λ < µ, then λ∆`∗(`) < c for all ` > `∗.

Proof. Part (a): The idea of the proof is to write the value of quality as a short stream of dividends
and a continuation value and to show that both the dividends and the continuation value are higher
for `′0 = `∗ than for `0 > `∗. We terminate the dividend expansion at time T = min {t : `t ≤ `∗}
when the reputation starting at `0 first reaches `∗ or jumps over `∗ at the arrival of a signal.

∆`∗(`0) = Eθ∞=L

[∫ T

0
e−(r+λ)tDH (`t) dt + e−(r+λ)T ∆`∗ (`T )

]
,

∆`∗(`∗) = Eθ∞=L

[∫ T

0
e−(r+λ)tDH

(
`′t

)
dt + e−(r+λ)T ∆`∗

(
`′T

)]
,

45



By definition of T , we have `′t ≤ `∗ < `t and by Lemma 11 we get DH (`′t) > DH (`t). The
continuation value is also smaller in the first expression by Lemma 13(a): If the dividend expansion
ends at a signal, then `′T < `T ≤ `∗; otherwise we have `′T ≤ `∗ = `T .

Part (b): In this case the idea is to expand ∆`∗(`) until cutoff time T (`) and compare the
dividends D (`t) to the annuity value of ∆`∗(`∗):

∆`∗(`)−∆`∗(`∗) = E

[∫ T (`)

0
e−(r+λ)tDH (`t) dt + e−(r+λ)T (`)∆`∗ (`∗)

]
−∆`∗(`∗)

= E

[∫ T (`)

0

(
e−(r+λ)tDH (`t)− (r + λ)∆`∗ (`∗)

)
dt

]
(C.5)

To show that the integrand is negative, we now expand (r + λ)∆`∗ (`∗) into reputational divi-
dends DH (`∗t ), that exceed DH (`t) on average:

(r + λ)∆ (`∗) = (r + λ)
∫ ∞

0
e−(r+λ)tE [DH (`∗t )] dt

≥ (r + λ)
∫ ∞

0
e−(r+λ)t Pr (`∗t ∈ [`D, `∗ − α]) inf

`∈[`D,`∗−α]
{DH (`)} dt

≥ sup
`′≥`∗

{DH (`)}

≥ sup
t≤T (`)

{DH (`t)}

The third line uses that for α > 0 sufficiently small, and `∗ sufficiently large we get Pr (`∗t ∈ [`D, `∗ − α])
close to 1, while by choosing `∗ large enough, we get inf`∈[`D,`∗−α] {DH (`)} / sup`>`∗ {DH (`)} as
large as necessary by Lemma 11. ¤
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D Imperfect Poisson Learning: Proof of Theorem 6(a) and (b)

D.1 Proof of Theorem 6(a)

We prove Theorem 6(a) in two steps. Lemma 15 shows that for low costs, the firm prefers to
invest at intermediate reputations in any candidate equilibrium. Lemma 16 shows that if market
learning ensures (HOPE) and the firm invests at intermediate reputations, it also prefers to invest
when its reputation is low. Intuitively, a firm with reputation just below a tentative shirk-work
cutoff hopes to achieve an intermediate reputation in the future and thus prefers to work.

Lemma 15 On any bounded interval
[−`, `

]
the value of quality ∆(`) is bounded away from zero,

uniformly across cost c and candidate equilibria η.

Proof. Lemma 3 states that equilibrium value functions are strictly monotone. Its proof actually
implies the slightly stronger result that Vθ (`′)−Vθ (`) for `′ > ` is bounded below by some strictly
positive function γ (`, `′) > 0 that is independent of c and the equilibrium η. This is because the
reputational increment `′t − `t diminishes at most at the finite rate λ

(
1 + e`

)
+ λ

(
1 + e−`

)
. By

Theorem 1 this uniform lower bound on the value of incremental reputation implies a uniform
lower bound on the value of quality on any compact interval

[−`, `
]
. ¤

Lemma 16 Fix any ` > 0. If market learning ensures (HOPE) then there exists c` such that for
all c ∈ (

0, c`

)
a firm with reputation ` ∈ (−∞, `) works in equilibrium.

Proof. From Lemma 15 we know that the value of quality is uniformly bounded below on
[−`, `

]
.

By contradiction, consider a candidate equilibrium with a shirk-region in (−∞,−`] and let `∗ < −`

be the highest shirk-work cutoff. We expand ∆(`∗ − ε) until the first time T when `t ≥ −`. The
value of quality at `∗ − ε must exceed its continuation value in the contingency that T is reached:

∆(`∗ − ε) ≥ E[e−(r+λ)T ∆(`T )]. (D.1)

As ∆(`T ) is bounded below we just need to show that E[e−(r+λ)T ] is bounded below. By the
assumption that market learning ensures (HOPE), and by choosing −`, and thus `∗, low enough,
the firm’s initial reputation `∗ − ε will rise above `∗ with positive probability. Once `t > `∗,
equilibrium beliefs η̃ = 1 will push reputation to −` in finite time with positive probability.

Thus the right-hand-side of (D.1) is uniformly bounded below, and by choosing c small enough
we get λ∆(`∗ − ε) > c. Therefore, the candidate equilibrium with shirk-work cutoff `∗ is not an
equilibrium. ¤
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D.2 Proof of Theorem 6(b)

We need to show that there is a continuum of shirk-work-shirk equilibria if condition (HOPE) is
violated. A shirk-work-shirk candidate equilibrium with shirk-work cutoff 21 x∗1 and work-shirk
cutoff x∗2 is an equilibrium if

λ∆(x) =





≤ c for x ∈ [−∞, x∗1)
≥ c for x ∈ [x∗1, x

∗
2]

≤ c for x ∈ [x∗2,∞]

To satisfy the first condition, it suffices to choose any x∗1 < rc/λ. This guarantees Vθ (x) < c/λ

for all x < x∗1 because reputational drift and jumps are negative below x∗1. Thus λ∆(x) < c as
required.

To satisfy the second and third condition we reapply the proof of Theorem 5: In the shirk-work
candidate equilibrium with cutoff x∗1, the value of quality in the work-region is bounded below for
intermediate reputations and it disappears for high reputations. Again, for low values of c, there
exists a work-shirk cutoff x∗2 close to 1, such that the firm prefers to work below this cutoff and
shirk above the cutoff.

21Suppose for simplicity that the firm works at the shirk-work cutoff, i.e. η (`∗1) = 1.
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Abstract

We study the lifecycle of a firm who sells a product of uncertain quality, characterizing
the optimal investment and exit decisions and the resulting firm dynamics. We investigate
two model variations. If the firm shares the market’s uncertainty, it learns about its product
quality through past actions and public signals. This learning generates a level of self-esteem
which coincides with its public reputation only on the equilibrium path. We show that the
firm is incentivized to invest by the marginal value of self-esteem, and that the firm stops
investing when its reputation approaches the exit threshold and its life-expectancy vanishes. In
contrast, when the firm knows its product quality perfectly, both high- and low-quality firms
invest at the threshold where low-quality firms exit the market. While the life-expectancy of a
low-quality firm vanishes, investment remains profitable because investment success boosts the
firm’s quality and averts exit.

1 Introduction

Maintaining a good reputation is essential for survival in many industries. Professionals (e.g.
consultants, lawyers, academics) invest in their skills to develop a reputation for solving problems,
but may quit and change occupation if they do not succeed. Similarly, restaurants try to build a
reputation for high quality food and service, but many fail with 25% of young restaurants exiting
each year (Parsa et al. (2005)). This paper develops a simple model to study the lifecycle of
such a firm. We characterize the optimal exit decision, and analyze how this impacts the firm’s
investment incentives.

In the model, illustrated in Figure 1, one long-lived firm sells a product of high or low quality
to a continuum of identical short-lived consumers. Product quality is a stochastic function of

∗We gratefully acknowledge financial support from NSF grant 0922321. Keywords: Reputation, Self-esteem, Exit,
Lifecycle, Firm dynamics, Career concerns. JEL: C73, L14

†Department of Economics, UCLA. http://www.econ.ucla.edu/sboard/
‡Department of Economics, UCLA. http://www.econ.ucla.edu/people/Faculty/Meyer-ter-Vehn.html
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Figure 1: Gameform. Quality is a function of the firm’s investment and its past quality. Consumer
utility is an imperfect signal of quality that the market uses to update the firm’s reputation.

the firm’s past investments. Consumers observe neither quality nor investment directly and learn
about the product quality through breakthroughs that can only be produced by a high-quality
product. At each point in time, consumers’ willingness to pay is determined by the market belief
that the quality is high, xt, which we call the reputation of the firm. This reputation changes
over time as a function of (a) the equilibrium beliefs of the firm’s investments, and (b) market
learning via product breakthroughs. The firm can exit the market at any time, and does so when
its reputation falls below some threshold.

Our analysis and the form of the results depend on whether or not the firm knows its own
quality. Which case is more relevant will depend on the application at hand. For example, an
academic who obtains breakthroughs by publishing papers, knows her past publishing success and
how much she invests in her skills, but shares the profession’s uncertainty of her current ability
and future success. In contrast, a restaurateur, who obtains breakthroughs through newspaper
reviews, can learn directly from customer feedback whether it has a potentially successful concept,
a signal not available to the market as a whole.

We first suppose the firm does not know its own quality. In equilibrium, the state of the game
is summarized by the firm’s reputation. Off the equilibrium path the firm’s belief about its quality,
its self-esteem, diverges from its reputation because reputation is governed by believed investment
while self-esteem is governed by actual investment. The firm’s value is thus a function of both its
reputation and its self-esteem, and investment incentives are determined by the marginal value of
self-esteem. In our first major result, we show this marginal value of self-esteem can be written as
a present value of future reputational dividends, which capture the immediate marginal benefit of
self-esteem.

In equilibrium, the firm’s self-esteem and reputation coincide. When this reputation is very
low, the firm’s losses exceed the option value of staying in the market, and it exits the market. For
a firm above the exit threshold, investment incentives are hump-shaped in the firm’s reputation.
For low reputations near the exit threshold, the firm’s life expectancy is very short and the firm
stops investing. In equilibrium the market anticipates this effect and adverse market beliefs further
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accelerate the firm’s demise. For intermediate reputation levels, the marginal value of self-esteem
is bounded below and the firm invests when costs are sufficiently low. Finally, when the firm’s
reputation is close to 1, the firm cannot work in equilibrium. If the firm was believed to work at
such a reputation, the lack of any breakthrough would be attributed to bad luck, undermining the
incentive to actually invest.

Next, we suppose the firm knows its own quality. Here the firm’s value is a function of its
reputation and its quality, and investment is incentivized by the difference in value between a high
and low quality firm. As above, we express this value of quality as the net present value of future
reputational dividends, and use this expression to characterize incentives.

In equilibrium, the firm’s quality affects its exit decision but not its investment. Specifically,
there is a threshold where a low-quality firm exits, a high quality firm remains in the market, and
the exit rate of the low-quality firm keeps the reputation of surviving firms at this threshold. In
equilibrium, the firm’s investment incentives are decreasing in its reputation and are maximized
at the exit threshold, so the firm fights until the bitter end. While the low-quality firm’s life
expectancy vanishes as it approaches the exit threshold, investment success is observable and
averts exit, resulting in investment incentives that are of first order. In contrast, with unknown
quality, investment success still needs to be learned by the firm and investment incentives are of
second order.

While we derive our main results for a perfect good news specification of market learning, many
of these effects are robust to more general stationary learning structures with imperfect Poisson
and Brownian signals. We also discuss how to model entry into the market in order complete the
firm’s lifecycle.

1.1 Literature

Our model is based on Board and Meyer-ter-Vehn (2010), which bridges classic models of rep-
utation (e.g. Holmström (1999), Mailath and Samuelson (2001)) and models of repeated games
(e.g. Fudenberg et al. (1990)). Our earlier paper characterizes firms’ investment problems without
considering entry or exit. As equilibrium investment does not depend on quality the distinction
between the known and unknown quality cases is moot, and the issue of self-esteem does not arise.

Bar-Isaac (2003) analyses the optimal exit decision of a firm with fixed quality. He lays the
foundation for our paper, introducing the distinction between known and unknown quality. He
also shows that threshold exit rules are optimal and that a firm that knows it has high quality
never exits because exit of low types bounds the reputational evolution from below. We build on
Bar-Isaac’s paper by analyzing how these exit decisions impact the firm’s investment decisions at
different stages of its lifecycle.

Kovrijnykh (2007) introduces exit into the career concerns model of Holmström (1999). This
leads to the same issues of inner- and outer-reputation as in the present paper. Because of tractabil-
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ity problems with the normal-linear model, this paper only considers a three-period model, which
limits the scope of the results.1

There are many other models of firm dynamics. In complete information models (e.g. Jovanovic
(1982), Hopenhayn (1992), Ericson and Pakes (1995)), firms differ in their capabilities, and choose
when to enter, exit and invest. In comparison, we allow quality to be imperfectly observed,
introducing a role for reputation that affects the firm dynamics and investment incentives. In
contrast to repeated games models (e.g. Gale and Rosenthal (1994), Rob and Fishman (2005)),
our firm has a state variable, enabling us to impose more discipline on equilibria by focusing on
Markovian equilbria.

2 Model

Overview: There is one firm and a continuum of consumers. Time t ∈ [0,∞) is continuous and
infinite; the common interest rate is r ∈ (0,∞). At time t the firm produces one unit of a product
that can have high or low quality, θt ∈ {L = 0,H = 1}. The expected instantaneous value of the
product to a consumer equals θtdt. The market belief about product quality xt = Pr(θt = H) is
called the firm’s reputation. The firm chooses investment ηt ∈ [0, 1] at cost (cηt + k) dt, where c is
the cost of investment and k is the operating cost; the firm can exit the market at any time.

Technology: Product quality θt is a function of past investments (ηs)0≤s≤t via a Poisson process
with arrival rate λ that models quality obsolescence. Absent a shock quality is constant, θt+dt = θt;
when a shock occurs previous quality becomes obsolete and is determined by the level of investment,
Pr(θt+dt = H) = ηt.2 Quality at time t is then a geometric sum of past investments,

Pr (θt = H) =
∫ t

0
λeλ(s−t)ηsds + e−λt Pr (θ0 = H) . (2.1)

Information: Consumers observe neither investment η nor product quality θ. We analyse both
the case were the firm does not know its own quality (Section 3) and where it does (Section 4).
Consumers (and the firm) learn about quality through product breakthroughs that arrive to high-
quality firms at Poisson rate µ. The quality obsolescence process and the breakthrough process
are statistically independent. The breakthroughs can be related to consumers’ utility by assuming
that dUt = 0 almost always, with each breakthrough yielding utility 1/µ.

1This distinction between private and public beliefs is also present in Bonatti and Horner’s (2010) model on
strategic experimentation.

2This formulation provides a tractable way to model product quality as a function of past investments. For
example, one can interpret investment as the choice of absorptive capacity, determining the ability of a firm to
recognise new external information and apply it to commercial ends (Cohen and Levinthal (1990)).
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Reputation Updating: The reputation increment dxt = xt+dt − xt is governed by product
breakthroughs, their absence, and market beliefs about investment η̃. A breakthrough reveals high
quality, so the firm’s reputation immediately jumps to one, xt+dt = 1. Absent a breakthrough, dx

is deterministic and by independence it can be decomposed additively:

dx = λ(η̃ − x)dt− µx(1− x)dt. (2.2)

The first term is the differential version of equation (2.1); if expected quality after a technology
shock η̃ exceeds current expected quality x then reputation drifts up. The second term is the
standard Bayesian increment in the absence of a breakthrough.

Profit and Consumer Surplus: The firm and consumers are risk-neutral. At time t the firm
sets price equal to the expected value xt, so consumers’ expected utility is 0. The firm’s flow profit
is (xt − cηt − k)dt and its discounted present value is thus given by:

V = E
[∫ T

t=0
e−rt(xt − cηt − k)dt

]
(2.3)

Markov-Perfect-Equilibrium: We assume Markovian beliefs η̃ = η̃ (x) and define Markov-
Perfect-Equilibria in Sections 3 and 4 respectively.

3 Unknown Quality

If the firm does not know its own quality, its investment and exit decisions will depend on its public
reputation xt = Pr (θt = H|Us, s ∈ [0, t]) and its self-esteem zt = Pr (θt = H|Us, ηs, s ∈ [0, t]). At
time 0, we assume that z0 = x0. Subsequently, the dynamics of self-esteem are determined by

dz = λ (η (x, z)− z) dt− µz (1− z) dt (3.1)

absent a breakthrough, and zt+dt = 1 after a breakthrough. This differs from (2.2) in that self-
esteem depends on actual investment η, whereas reputation depends on believed investment η̃. In
equilibrium these coincide, but investment incentives are determined by off-equilibrium consider-
ations.

In a Markovian equilibrium we can write the firm’s value as function of its reputation and
self-esteem, V (x, z). A Markov-Perfect-Equilibrium 〈η, η̃〉 then consists of an investment function
η : [0, 1]2 → [0, 1], exit-region R ⊆ [0, 1]2, and market beliefs η̃ : [0, 1] → [0, 1] such that: (1)
Investment maximizes firm value, V (x, z); (2) The firm exits when value is negative, V (x, z) ≤ 0;
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and (3) Market beliefs are correct, η̃ (x) = η (x, x).3

The value function has a number of basic properties. V (x, z) is increasing in reputation x, since
this leads directly to higher revenue. V (x, z) is increasing in self-esteem z, since a higher quality
ultimately leads to higher reputation. Finally, V (x, z) is convex in self-esteem z, since information
about quality is valuable to the firm.4

3.1 Optimal Investment and Exit Decisions

Lemma 1 shows that investment incentives are determined by the marginal value of self-esteem,
∂zV (x, z). This is because investment directly controls quality and thus the firm’s belief about its
quality, i.e. its self-esteem.

Lemma 1. Equilibrium investment satisfies

η (x, z) =

{
1 if λ∂zV (x, z) > c

0 if λ∂zV (x, z) < c

Proof. Using (3.1), investment over [t, t + dt] increases self-esteem by λdt, and therefore yields the
firm λ∂zV (x, z).

The firm exits the industry when its value is negative. Since reputation declines continuously
(or jumps up) and the firm’s value is increasing in its reputation and self-esteem, the firm exits
when its reputation falls to zero, V (x, z) = 0. On the equilibrium path, the firm exits at xe defined
by

V (xe, xe) = 0.

3.2 Marginal Value of Self-Esteem

In order to understand the firm’s investment incentives we decompose the value of incremental
self-esteem, V (x, z′)− V (x, z) into (a) its immediate benefit, called the reputational dividend (of
self-esteem), and (b) its continuation value. First we develop the value of a firm with self-esteem
z:

V (x, z) = rdt (x− ηc− k)︸ ︷︷ ︸
Today’s Payoff

+(1− rdt) V (x + dx, z + dz)︸ ︷︷ ︸
No Breakthrough

+zµdt (V (1, 1)− V (x + dx, z + dz))︸ ︷︷ ︸
Breakthrough

3If the firm does not exit when its value become negative, the market interprets this as a mistake and updates
based on market learning and η̃ = η̃ (xe), where xe is the exit point.

4To prove monotonicity suppose the firm with the higher reputation (self-esteem) mimics the firm with the lower
reputation (self-esteem). To prove convexity, suppose z is a convex combination of z′ and z′′, and let firms z′ and
z′′ mimic z.
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where the increments dx and dz are conditional on no breakthroughs, as given by (2.2) and (3.1),
and are thus deterministic. If we instead start with self-esteem z′ we can write a similar expression.
Adding and subtracting V (x + dx, z + dz) then yields,

V
(
x, z′

)
= rdt (x− ηc− k) + (1− rdt) V

(
x + dx, z′ + dz′

)
+ z′µdt (V (1, 1)− V (x + dx, z + dz))

+ z′µdt
(
V (x + dx, z + dz)− V

(
x + dx, z′ + dz′

))
.

Having higher self-esteem does not affect revenue today, but alters the evolution of future rep-
utation and therefore future revenue. In particular, from these two equations, the value of the
increment z′ − z is given by5

V
(
x, z′

)− V (x, z) =
(
z′ − z

)
µ (V (1, 1)− V (x, z))︸ ︷︷ ︸

Reputational Dividend

dt

+ (1− (r + zµ) dt)
(
V

(
x + dx, z′ + dz′

)− V (x + dx, z + dz)
)

︸ ︷︷ ︸
Continuation Value

.

The first term is the reputational dividend: the immediate benefit of incremental self-esteem. The
second term is the continuation value depreciated by interest rate r and rate of breakthroughs µz,
that render incremental self-esteem obsolete. Integrating, and dividing by (z′0 − z0):

V (x0, z
′
0)− V (x0, z0)
z′0 − z0

=
∫ T

0
exp

(
−

∫ t

0
r + µzsds

)
z′t − zt

z′0 − z0
µ (V (1, 1)− V (xt, zt)) dt

+ exp
(
−

∫ T

0
r + µzsds

)
V (xT , z′T )− V (xT , zT )

z′0 − z0

where T = T (x0, z0) is the first time that the trajectory (xt, zt) hits the exit region. The second
term vanishes in the limit because optimal exits implies V (xT , z) = 0 for z ≤ zT , and smooth-
pasting of the value function then implies V (xT , z′T )− V (xT , zT ) ∈ o (z′T − zT ).

By the updating equation of self-esteem (3.1), the increment decreases at rate d ln (z′t − zt) /dt =
1− (λ + µ (1− 2zt)). It follows that

∂zV (x0, z0) =
∫ T

0
e−

∫ t
0 r+λ+µ(1−zs)ds µ (V (1, 1)− V (xt, zt)) dt (3.2)

Setting zt = xt, we conclude:

5When we cancel current cashflows we assume investment is identical on the two trajectories, η (x, z) = η (x, z′).
This approximation is justified by the consideration that the amount of time at which η (xt, zt) 6= η (xt, z

′
t) is of order

z′0 − z0, and that the joint effect of the approximation at these times is of order c− ∂zV (x, z), which in equilibrium
converges to 0 as z′0 − z0 becomes small.
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Proposition 1. In equilibrium the marginal value of self-esteem is given by

Γ(x0) := ∂zV (x0, x0) =
∫ T

0
e−

∫ t
0 r+λ+µ(1−xs)ds D(xt)dt (3.3)

where D(x) := µ (V (1, 1)− V (x, x)) is the equilibrium reputational dividend.

Proposition 1 expresses the marginal value of self-esteem as the discounted sum of future repu-
tational dividends. Since quality is persistent, investment does not pay off immediately but rather
through a stream of dividends whose value depends on the future evolution of the firm’s reputa-
tion. In equation (3.3), the dividends are discounted by the interest rate r, and the rate at which
incremental self-esteem vanishes. The latter consists of two terms: if there is no breakthrough
the gap closes at rate − (λ + µ(1− 2z)) dt; if there is a breakthrough the gap completely closes,
leading to a −µzdt term.6

3.3 Shirk-Work-Shirk Equilibrium

In this Section we show that, when λ and c are sufficiently low, the firm shirks when its reputation
is either low or high, and works for intermediate reputations. The intuition is as follows. For low
reputations x ≈ xe, the firm is almost certain to go out of business soon, undermining its incentives
to further invest into its product. In equilibrium the market anticipates that the firm gives up
and the adverse beliefs accelerate the firm’s demise. For intermediate reputations, incentives are
bounded from below and the firm invests when the investment costs are sufficiently low. Finally,
for high reputations x ≈ 1, the firm cannot keep investing in equilibrium. If it did, its reputation
would stay close to 1, because the market learns little from the absence of breakthroughs when
it is sufficiently convinced of the firm’s quality. This dynamic undermines the firm’s incentive to
actually invest.

While these effects are robust, their occurrence in the good news model relies on two restrictions
on the model parameters. First, we assume that a firm’s reputation declines in the absence of a
breakthrough, even if the firm is believed to be investing. Using equation (2.2), this means that
xe > λ/µ. Formally, we assume that

r (λ/µ− k) + λ (1− k) < 0 (A-λ)

which is satisfied if λ is sufficiently low, limiting the role of market beliefs. Equation (A-λ) says
that the (negative) profits earned at x = λ/µ are lower than the option value of receiving a
breakthrough. Second, we assume c is sufficiently low so that firms with intermediate reputations
choose to invest.

6The astute reader will notice that we ignored the possibility that z′ may have a breakthrough but not z, increasing
(dz′ − dz)/(z′ − z) at rate µ(1− z)dt. However this term is captured by the reputational dividend.
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Proposition 2. Suppose (A-λ) holds and c is sufficiently low. In any equilibrium:
(a) The optimal investment is characterized by cutoffs λ/µ < xe < x < x < 1 such that the firm

exits if x ∈ [0, xe]
shirks if x ∈ [xe, x]
works if x ∈ [x, x]
shirks if x ∈ [x, 1]

(b) The optimal exit threshold xe satisfies

(xe − k) + xeµV (1, 1) = 0. (3.4)

Proof. See Appendix A.1.

The arguments leading up to the Proposition already show that every equilibrium must have
(1) some shirking at the bottom, (2) some working in the middle, and (3) some shirking at the
top. The proof, which is based on Proposition 1, strengthens these arguments to show that any
equilibrium must be characterized by intervals.

Condition (3.4) follows from the indifference of a firm at reputation xe to exit or stay. At this
point, the firm’s negative instantaneous profits xe− k are balanced by the option value xeµV (1, 1)
of staying in the market.

While our analysis focuses on learning through perfectly revealing good news signals, the spirit
of these results extend to more general learning structures. Following Board and Meyer-ter-Vehn
(2010), suppose the market learns through a signal Zt, that is generated by a Brownian motion and
finite number of Poisson processes. The Brownian component is given by dUB,t = µBθtdt + dWt,
where Wt is a Wiener process. A Poisson process has a signal arrive at rate µθ. Such a signal is
good news if the net arrival rate µ := µH − µL is positive, perfect good news if µL = 0, bad news
if µ < 0, and perfect bad news if µH = 0.

As shown in Appendix A.2, we can generalize equation (3.2) to express the marginal value of
self-esteem as

∂zV (x0, z0) = E
[∫ T

0
e−rt ∂z (z0, t)

∂z0
D (xt, zt) dt

]
(3.5)

where the reputational dividend is

D (xt, zt) = (EH [V (xt+dt, zt+dt)]− EL [V (xt+dt, zt+dt)]) /dt.

and Eθ [V (xt+dt, zt+dt)] conditions the evolution of x and z on θ. In the Appendix, we explicitly
calculate the term ∂z (z0, t) /∂z0 as a function of the learning process.

Using (3.5) one can extend our results to general learning structures. For low reputations
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x ≈ xe, investment incentives disappear and the firm shirks if exit becomes imminent, T → 0 a.s.,
as x0 → xe. This condition holds under our good news specification or if there is any Brownian
motion. For high reputations x ≈ 1, investment incentives disappear and there will be some
shirking at the top, as long as there is no perfect bad news signal. Under these circumstances, if
the firm was thought to be working at x ≈ 1, then xt stays close to 1 with probability one for all
t, yielding dividends D (xt, xt) ≈ 0 forever.

3.4 Entry

We have characterized the firm’s optimal investment and exit decisions. To complete the firm’s
lifecycle, suppose there is measure dt of potential entrants into the market over [t, t+dt]. Potential
entrants have a public reputation x0, and therefore only enter if x0 > xe. Once a firm enters the
market he plays the game we have studied above, choosing his investment and exit decisions.7

As an application, consider the labor market for academics. When an agent enters the industry
her type is unknown to her and the market, but her GPA is common knowledge and determines
her initial reputation x0. Agents with low GPAs choose not to enter the industry. Agents with
high GPAs enter, invest in their skills over time and are free to exit at any point; the market then
learns about their skills via their breakthroughs (e.g. publications). Proposition 2 predicts that an
agent will stop investing in her skills shortly before she exits or after she has had a breakthrough.

4 Known Quality

We now turn to the case were the firm knows its quality, θt. In a Markovian equilibrium we
can write the firm’s value as function of its reputation and quality, Vθ (x). A Markov-Perfect-
Equilibrium 〈η, η̃〉 then consists of an investment function η : [0, 1]×{L,H} → [0, 1], a exit region
R ⊆ [0, 1]×{L,H}, and market beliefs η̃ : [0, 1] → [0, 1] such that: (1) Investment maximizes firm
value Vθ(x); (2) The firm exits when its value is negative Vθ(x) ≤ 0; and (3) Market beliefs are
correct, η̃ (x) = (1− x) ηL (x) + xηH (x).

It is straightforward to show that the value function Vθ(x) is increasing in reputation x, since
this leads directly to higher revenue. In addition, Vθ(x) is increasing in quality θ, since this will
ultimately lead to higher reputation.8

7This analysis implicitly assumes that the firm can only invest if they have paid the operating cost k to be in the
market. For example, an academic can only invest in her skills if she no other job, where k is the opportunity cost.

8To prove, suppose the firm with the higher reputation (self-esteem) mimics the firm with the lower reputation
(self-esteem).
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4.1 Optimal Investment and Exit Decisions

The benefit of investment over [t, t + dt] is the probability a technology shock hits, λdt, times the
difference in value functions, ∆(x) := VH (x)−VL (x), which we call the value of quality. It follows
that:

Lemma 2. Optimal investment η (x) is independent of quality θ and given by

η (x) =

{
1 if λ∆(x) > c

0 if λ∆(x) < c

where ∆(x) := VH (x)− VL (x) is the value of quality.

The firm exits the industry when its value is negative. Since reputation declines continuously
(or jumps up), the firm exits when its value falls to zero Vθ(x) = 0. As quality is a valuable asset,
the low-quality firm exits when the high-quality firm’s value is strictly positive. This exit process
of low-quality firms prevents a further decline in reputation, so a high quality firm never exits, as
in Bar-Isaac (2001). As a result:

Lemma 3. Define xe by VL(xe) = 0.
(a) The high-quality firm never exits, while
(b) The low-quality firm exits if xt ≤ xe and, if so, exits so that xt+dt = xe. At the cutoff xe, the
rate of exit is

q =
[
µ− λ(η(xe)− xe)

xe(1− xe)

]
dt. (4.1)

As a result, xt ∈ [xe, 1] for t > 0.

Proof. Firm L quits to keep xt+dt = xe when xt ≤ xe. Hence VL(x) = 0 and VH(x) > 0 for
x ≤ xe, and the high-quality firm never exits. When xt = xe, the low firm’s quit probability can
be calculated using Bayes rule:

q = 1− 1− xe

xe
× xe + dx

1− (xe + dx)
≈ − dx

xe(1− xe)

so equation (2.2) yields (4.1).

4.2 Value of Quality

In order to characterise investment incentives we need to evaluate the value of quality ∆(x) =
VH(x) − VL(x). Following Board and Meyer-ter-Vehn (2010, Theorem 1), we develop the value
functions into current profits and continuation values. Current profits cancel because both current
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revenue and costs depend on reputation but not on quality, yielding

∆(x) = (1− rdt)(1− λdt)E [VH(x + dHx)− VL(x + dLx)] .

Adding and subtracting VH(x+dLx), we can express the value of quality in terms of a reputational
dividend and continuation value:

∆(x) = (1− rdt− λdt)
(
D̂(x) + E [∆(x + dLx)]

)
.

where
D̂(x) := [VH(x + dHx)− VH(x + dLx)]/dt (4.2)

is the reputational dividend for known quality. Evaluating (4.2) and integrating up, we express the
value of quality as the discounted sum of future reputational dividends:

Proposition 3. In equilibrium, the marginal value of quality is given by

∆(x0) =
∫ ∞

0
e−(r+λ)tD̂(xt)dt. (4.3)

where D̂(x) = µ(VH(1)− VH(x)).

This representation of investment incentives with known quality differs from the unknown
quality case in (3.3) in two respects. The substantial difference is that in (4.3) we integrate over
[0,∞], whereas whereas in (3.3) the integral is over [0, T ]. With known quality, a firm never exits
with certainty because exit by low quality firms bounds reputational below at xe and leaves even
low quality firms indifferent about exiting. In contrast, with unknown quality the firm strictly
prefers to exit after the exit time T . This difference can be reflected in the algebra by rewriting
(4.3) as as ∆(x0) =

∫ T e

0 e−(r+λ)tD̂(xt)dt + e−(r+λ)T e
∆(xe), where T e is the time xt hits xe. In

the known quality case the continuation value of the discrete quality increment e−(r+λ)T e
∆(xe)

is strictly positive, whereas in the unknown quality case, the continuation value of incremental
self-esteem V (xT , z′T )− V (xT , zT ) is of second order because of smooth pasting.9

A second, more expositional, difference is that we choose simpler, if less canonical, functional
forms in (4.3) than we did in (3.3). Specifically, we choose a constant discount rate r + λ here. In
Appendix A.3 we show that this is exactly compensated by replacing the reputational dividend
D (x) = V (1, 1)− V (x, x) with D̂(x) = µ(VH(1)− VH(x)).

9At the exit threshold, firm zT receives zero profits when accounting for the option value of staying in the market.
Hence firm z′T receives small profits for a small period of time, which is of second order.
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4.3 Work-Shirk Equilibrium

The reputational dividend equals the value of increasing the firm’s reputation from x to 1, times
the probability of a breakthrough. This dividend is decreasing in x, so equation (4.3) implies that
the value of quality ∆(x0) is decreasing in x0. As a result, the firm’s investment incentives are
decreasing in its reputation:

Proposition 4. Suppose (A-λ) holds and c is sufficiently low. In any equilibrium:
(a) The optimal investment is characterized by cutoffs λ/µ < xe < x∗ < 1 such that the firm10

exits if x ∈ [0, xe] and quality is low
works if x ∈ [xe, x∗]
shirks if x ∈ [x∗, 1]

(b) The optimal exit threshold xe is characterized by

(xe − c− k) + λVH(xe) = 0 (4.4)

at which point the low-quality firm exits at rate q =
[
µ− λ

xe

]
.

Proof. Assumption (A-λ) ensures that xe ≥ λ/µ and therefore xt, as determined by (2.2), is
decreasing in t. To see this suppose, by contradiction, that xe < λ/µ. Since the dynamics are
stationary at x̂ := λ/µ,

VL(x̂) =
1

r + λ
[r(x̂− cη − k) + λVH(x̂)].

Observing that VH(x̂) ≤ 1− k, assumption (A-λ) implies that VL(x̂) < 0 as required.
The dividend D̂(x) is strictly decreasing in x, and xt is decreasing in x0, so ∆(x) is strictly

decreasing in x. It remains to be shown that none of the intervals is trivial, i.e. that all the
inequalities λ/µ < xe < x∗ < 1 are strict. Assumption (A-λ) implies that the exit region [0, xe]
exists. The cost is sufficiently small, so the work-region [xe, x∗] exists. Finally, the upper shirk-
region [x∗, 1] exists because ∆(x∗) = 0 if x∗ = 1.

Condition (4.4) is the indifference of a working firm with low quality to stay or exit when its
reputation equals xe. At this point, the negative instantaneous profits xe − c− k are balanced by
the option value λVH(xe) of staying in the market. The exit rate follows from (4.1).

Proposition 4 shows that, unlike the unknown quality case, the firm invests even as its repu-
tation drops very low, and exit becomes imminent. This is because a technology shock increases
the firm’s product quality by a discrete amount and averts exit. Consider a firm who is just about

10Recall exit is probabilistic, as established in Lemma 3.
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to exit: with known quality investment pays off if there is a technology shock, which occurs with
probability λdt; with unknown quality investment pays off if the firm’s quality increases and it
achieves a breakthrough, which happens with probability λdt× µdt.

In our model, a firm’s knowledge of its own quality is not directly relevant for its investment
decision, but does enable it to make better exit decisions. This change in exit behavior, in turn,
affects the firm’s investment incentives. While our analysis does not lend itself to compare equilibria
across the two cases, our results suggest that, at low reputations x an informed firm has higher
incentives to invest than an ignorant firm because it can condition its exit decision on the outcome
of the investment. On the other hand, at higher levels of reputation where this value of knowing
one’s quality is lower, one may suspect that the ignorant firm has higher incentives to invest in
order to stay away from the low reputation region.

Finally, Proposition 4 can be extended to more general learning structures using the general
expression for reputational dividends (4.2). For low reputations x ≈ xe, the dividend and value of
quality are strictly positive, so the firm invests if the cost is sufficiently low. For high reputations
x ≈ 1, investment incentives disappear as long as there is no perfect bad news signal. This will
lead to a shirk region at the top.

4.4 Entry

We can now complete the firm’s lifecycle by introducing entry into the model.11 Suppose potential
entrants are endowed with quality θ0 ∈ {L,H}. Then all high types will enter the market, while
low types enter until the reputation of an entrant falls to xe. If there is a large enough pool of
low-quality entrants, then firms enter with reputation x0 = xe. At this point, all entrants invest
in their quality, and low-quality firms immediately start exiting the market.

As an application, consider the lifecycle of a restaurant. There are some potential entrants
with a good concept, and many others who have no great idea, but are hopeful. Once a restaurant
enters the market, it chooses to invest in food, decor and service. A high quality restaurant may
then achieve a breakthrough in term of a good review, while a low quality restaurant may exit.
The model predicts that many new restaurants will exit rapidly, but will invest even when exit is
imminent. This is consistent with evidence that 25% of new restaurants close each year, and that
these restaurants work very hard to stay afloat (Parsa et al. (2005)).

5 Conclusion

This paper has studied the lifecycle of a firm that sells a product of unknown quality. The firm
chooses whether to enter the industry and, after entering, can invest in its quality and ultimately
exit. We showed that the reputational dynamics depend on whether the firm knows its quality.

11We assume entry is observable. This may not be the case: see Tadelis (1999) and Mailath and Samuelson (2001).
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When the firm is uninformed, it exits when its reputation falls too low, and shirks when exit is
imminent. When the firm is informed, only low-quality firms exit and such firms work no matter
how low their reputation.

We have studied the lifecycle of a single firm, ignoring firm interaction by assuming that indus-
try demand is perfectly elastic. As an extension, one could embed the model into a competitive
industry, assuming consumers have heterogenous demand for quality. Since our model allows for
entry and exit, the steady state would exhibit turnover related to the speed of learning µ and the
rate of technological change λ.12

12There are a couple of papers along these lines. Vial (2008) introduces perfect competition into Mailath and
Samuelson (2001) but has no exit. Atkeson, Hellwig, and Ordonez (2010) studies entry and exit in a monopolistically
competitive industry, but has no investment.
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A Omitted Material

A.1 Proof of Proposition 2

To prove Proposition 2 we first establish a lower bound on the marginal value of reputation.

Lemma 4. Fix model parameters λ, µ, k, r. There exists δ > 0 such that for all c, all equilibria η,

∂xV (x, x) ≥ δ for all x ∈ [k, 1].

A fortiori, the marginal reputational dividend has the upper bound:

D′ (x) = −∂xV (x, x)− ∂zV (x, x) ≤ −δ for all x ∈ [k, 1].

Proof. In equilibrium we have xe < k because the firm exits only when cash flows are negative.
Hence any firm with a reputation exceeding k stays in the market for a period of time that is
bounded below.

Consider two firms with different reputations but the same self-esteem: (x0, x0) and (x′0, x0),
where x′0 > x0. If the high firm mimics the investment strategy of the low firm, its reputation
x′t, and thus its profits x′t − cηt − k, exceed those of the low firm at all times t. While the
reputational increment x′t − xt may decrease over time, it does so at a finite rate by (2.2). Thus
the high firm can guarantee itself an incremental value (Vmimic − V (x0, x0)) that is bounded below
by a linear function of (x′0 − x0). In equilibrium the high firm achieves a weakly higher value
V (x′0, x0) ≥ Vmimic, finishing the proof.

Proof of Proposition 2. Fix model parameters λ, µ, k, r. Assumption (A-λ) ensures that
xe ≥ λ/µ and therefore xt, as determined by (2.2), is decreasing in t. To see this suppose, by
contradiction, that xe < λ/µ. Since the dynamics are stationary at x̂ := λ/µ,

V (x̂, x̂) =
1

r + x̂µ
[r(x̂− cη − k) + x̂µV (1, 1)]

Using x̂ = λ/µ and V (1, 1) ≤ 1− k, assumption (A-λ) implies that V (x̂, x̂) < 0 as required.
We now show that there exists ε > 0, and c > 0, such that for any equilibrium η

1. λΓ is strictly increasing on [xe, xe + ε] with λΓ(xe) < c.

2. λΓ is greater than c on [xe + ε, 1− ε].

3. λΓ (x) crosses c once and from above on [1− ε, 1] with λΓ(1) < c.
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Part (1). Differentiating (3.3), the marginal value of self-esteem obeys the following differential
equation:

d

dt
Γ (xt) = (r + λ + µ (1− x)) Γ (xt)−D(xt) (A.1)

Since Γ(xe) = 0, dΓ (xt) /dt < 0 for xt ∈ [xe, xe + ε]. Since dxt/dt < 0, Γ(x) is increasing in x.
Part (2). The dividend D(x) is bounded below for x ∈ [xe, 1− ε]. The time to exit T is bounded

below for x0 ∈ [xe + ε, 1− ε]. Therefore, we can choose c low enough such that c < λΓ (x) for all
x ∈ [xe + ε, 1− ε]

Part (3). By part (2) we know that λΓ (1− ε) > c. We also know that λΓ (1) ≤ c; otherwise the
firm would invest at x = 1 which would imply that dx = 0 and Γ (1) = 0, yielding a contradiction.

Thus, λΓ (x) crosses c at least once from above. Suppose, by contradiction, that λΓ (x) crosses
c at more than one point. Then there exist x1, x2 ∈ [1 − ε, 1] with x1 < x2, such that Γ has a
local minimum at x1 and a local maximum at x2 with Γ′ (x1) = Γ′ (x2) = 0 and Γ (x1) ≤ Γ (x2).13

Equation (A.1) implies that

Γ (x) =
µD (x)

r + λ + µ (1− x)

for x = x1, x2. We will now show that the RHS is strictly decreasing on [1− ε, 1]; this contradicts
Γ (x1) ≤ Γ (x2) and finishes the proof. Differentiating the logarithm of the RHS yields

D′ (x)
D (x)

− −µ

r + λ + µ (1− x)
.

The second term is bounded, while the first term is unboundedly negative for x ≈ 1 because
D (x) ≈ 0 and D′ (x) ≤ −δ by Lemma 4. Hence the derivative of the RHS is negative, as required.

Finally, part (b) of the Proposition is explained in the text.

A.2 General Market Learning: Derivation of (3.5)

For any general payoff function f(x), the value function is given by

V (x, z) = rdtf (x) + (1− rdt)Ez [V (xdt, zdt)] + O
(
dt2

)

where (xdt, zdt) are the stochastic values of reputation and self-esteem after dt, and

Ez [V (xdt, zdt)] := zEH [V (xdt, zdt)] + (1− z)EL [V (xdt, zdt)] .
13For this to be true, it is sufficient that Γ is differentiable in the interior of work-regions and shirk-regions but it

does not matter that Γ has kinks on the cutoffs.
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The marginal value of self-esteem is then

V
(
x, z′

)− V (x, z) = (1− rdt)
(
Ez′

[
V

(
xdt, z

′
dt

)]− Ez [V (xdt, zdt)]
)

=
(
z′ − z

)
(EH [V (xdt, zdt)]− EL [V (xdt, zdt)])︸ ︷︷ ︸

Dividend D(x,z)dt

+(1− rdt)Ez

[
V

(
xdt, z

′
dt

)− V (xdt, zdt)
]

Define the reputational dividend of self-esteem by

D (x, z) = (EH [V (xdt, zdt)]− EL [V (xdt, zdt)]) /dt

The rental value of marginal self-esteem then equals the dividend plus the appreciation:

rdt
(
V

(
x, z′

)− V (x, z)
)

=
(
z′ − z

)
D (x, z) dt + Ez

[
d

(
V

(
x, z′

)− V (x, z)
)]

.

If we integrate and divide by (z′0 − z0)

V (x0, z
′
0)− V (x0, z0)
z′0 − z0

= E
[∫ T

0
e−rt z′t − zt

z′0 − z0
D (xt, zt) dt

]
.

In the limit, this yields

∂zV (x0, z0) = E
[∫ T

0
e−rt ∂z (z0, t)

∂z0
D (xt, zt) dt

]

as in equation (3.5).
We can further develop the ∂z (z0, t) /∂z0 term for Brownian motion and Poisson shocks y ∈ Y .

z′dt − zdt

z′ − z
− 1 =





−λdt equilibrium beliefs
− (1− 2z)

∑
y µydt absence of Poisson shocks

(1− 2z) µBdW Brownian motion

µy
(1−2z)(zµy,H+(1−z)µy,L)−µyz(1−z)

(zµy,H+(1−z)µy,L)2 at Poisson shock y

Taking the limit

∂z (z0, t) /∂z0 =exp

(∫ t

0
−λ +

∑
y

µy (1− 2zs) ds

)
(Drift)

× exp
(
−

∫ t

0

(
µ2

B (1− 2zs)
2 /2

)
ds +

∫ t

0
(1− 2zs)µBdWs

)
(Brownian)

×
∏

y∈Y,ty∈Py

(
1 + µy

(1− 2z) (zµy,H + (1− z) µy,L)− µyz (1− z)
(zµy,H + (1− z) µy,L)2

)
(Poisson)
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The first term in the second line is the Ito-term accounting for the fact that exp (f (W ) dW ) =
1 + f (W ) dW + f (W )2 dt/2 + o (dt). In the third line, Py ⊆ [0, t] is the finite number of times
that Poisson shock y hits.

A.3 The Value of Quality: An Alternative Expression

We can now apply Proposition 1 to provide an alternative derivation of the firm’s investment
incentives with known quality. Define

V (x, z) := zVH (x) + (1− z) VL (x) .

Note that V (x, z) is linear in z, whereas it is convex in the unknown quality case. Repeating the
analysis in Section 3 yields:

∆(x0) =
∫ ∞

0
e−

∫ t
0 (r+λ+µ(1−xs))ds D(xt) dt (A.2)

where D(x) = µ(V (1, 1)− V (x, x)) is the reputational dividend.
To see that (A.2) and (4.3) are the same, we differentiate them and obtain:

(r + λ + µ(1− xt))∆(xt) = µ[V (1, 1)− V (x, x)] +
d

dt
[∆(xt)]

(r + λ)∆(xt) = µ[VH(1)− VH(x)] +
d

dt
[∆(xt)]

which coincide since µ(1− xt)∆(xt) = µ[VH(x)− V (x, x)].
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