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1 Introduction

General equilibrium theory famously states that– under certain assumptions– there ex-

ists a vector of prices such that all markets clear. It fails, however, to explain how

the market-clearing (“Walrasian”) price vector comes about. The literature on dynamic

matching and bargaining games, pioneered by Rubinstein and Wolinsky (1985) and by

Gale (1987), aims to fill this gap in the foundations for general equilibrium theory. It ad-

dresses the question of how prices are formed in decentralized markets and whether these

prices are Walrasian. Existing models of dynamic matching and bargaining, however,

assume that market demand and supply– and, hence, the market-clearing price– are

common knowledge among traders. This assumption is restrictive because markets have

been advocated over central planning precisely on the grounds of their supposed abil-

ity to “discover” the equilibrium prices by eliciting and aggregating information that

is dispersed in the economy; see Hayek (1945). By construction, existing models that

take market-clearing prices to be common knowledge remain silent about whether this

argument is correct and whether markets can indeed solve the price discovery problem.

We develop a dynamic matching and bargaining game to study price discovery in

a decentralized market. We relax the standard assumption that the aggregate state

of the market is common knowledge. In our model, individual traders are uncertain

about market demand and supply. No individual trader knows the relative scarcity of

the good being traded. We analyze the resulting patterns of trade and learning that

emerge in equilibrium. We ask whether traders eventually learn the relevant aggregate

characteristics and whether prices accurately reflect relative scarcity when frictions are

small.

Our model combines elements from Satterthwaite and Shneyerov (2008) andWolinsky

(1990). Specifically, the matching technology and the bargaining protocol are adapted

from Satterthwaite and Shneyerov. Time is discrete. In every period, a continuum

of buyers and sellers arrives at the market. All buyers are randomly matched to the

sellers, resulting in a random number of buyers that are matched with each seller. Each

seller conducts a second-price sealed-bid auction with no reserve price. At the end of

each round, successful buyers and sellers leave the economy. Unsuccessful traders either

leave the market without trading with some exogenous exit probability or remain in the

market. The exogenous exit rate makes waiting costly and is interpreted as the “friction”

of trade.1

The defining feature of our model is aggregate uncertainty, which we model similar

to Wolinsky (1990). There is a binary state of nature. The realized state is unknown

1The presence of an exit rate is the main difference between Satterthwaite and Shneyerov (2008) and
Satterthwaite and Shneyerov (2007). The exit rate ensures that strategy profiles determine steady-state
outcomes uniquely; see Nöldeke and Tröger (2009).
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to the traders and does not change over time. For each state of nature, we consider the

corresponding steady state of the market. In Wolinsky (1990), the state determines the

common value of the good being traded. We consider a private value setting instead. In

our model, the state of nature determines the relative scarcity of the good. Depending

on the state of nature, the mass of incoming buyers is either large or small, whereas the

mass of incoming sellers is independent of the state of nature. The larger the mass of

entering buyers is relative to the mass of entering sellers, the scarcer is the good. Every

buyer receives a noisy signal upon birth. Moreover, after every auction, the losing buyers

obtain additional information regarding the state. In our model, losing bidders do not

observe other buyers’bids. Nevertheless, they are able to draw an inference from the

fact that their respective bids lost.2

We characterize equilibrium learning and bargaining strategies. The buyers shade

their bids to account for the opportunity cost of foregone continuation payoffs. More-

over, despite the fact that the consumption value of the good is known, the fact that

continuation payoffs depend on the unknown common state of nature makes the buy-

ers’preferences interdependent. A resulting winner’s curse leads to further bid shading:

Winning an auction implies that on average fewer bidders are participating and that the

participating bidders are more optimistic about their continuation payoff. Both of these

facts imply a lower value of winning the good than expected prior to winning. Counter-

vailing the winner’s curse is a “loser’s curse.”The role of the loser’s curse for information

aggregation in large double auctions was identified by Pesendorfer and Swinkels (1997).

In our model, losing an auction implies that on average more bidders are participating

and that the participating bidders are more pessimistic about their continuation payoff.

The loser’s curse implies that bidders become more pessimistic and raise their bids after

repeated losses over time.3

We are particularly interested in the characterization of the equilibrium when the

exogenous exit rate is small, which is interpreted as the frictionless limit of the de-

centralized market. Our main result shows that the limit outcome approximates the

Walrasian outcome relative to the realized aggregate state of the market. If the realized

state is such that the mass of incoming buyers exceeds the mass of incoming sellers,

the resulting limit price at which trade takes place is equal to the buyers’willingness

to pay; if the realized state is such that the mass of incoming buyers is smaller than

the mass of incoming sellers, the price is equal to the seller’s costs. Therefore, prices

2Our model differs from the two cited papers. It differs from Satterthwaite and Shneyerov (2008),
because in our model buyers and sellers have homogeneous cost and valuations– but heterogeneous
beliefs– and because sellers cannot post secret reservation prices. Unlike Wolinsky (1990), in our model
valuations and costs are private and bargaining is according to an auction with a continuum of possible
bids, rather than bilateral price posting.

3Thus, the loser’s curse refers to the effect of the learning dynamics over time, whereas the winner’s
curse refers to bid shading in each period.
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aggregate information about the scarcity of the traded commodity; that is, prices reflect

the commodity’s economic value.

Our analysis reveals how the winner’s curse and the loser’s curse shape equilibrium

outcomes and information aggregation. We show that as the exit rate vanishes, entrants’

initial bids are dominated by the winner’s curse and the buyers bid for an increasing num-

ber of periods as if they are certain that the continuation value is maximal. Eventually,

however, the loser’s curse becomes strong enough so that those buyers who have lost in

a suffi ciently large number of periods raise their bids over time. Specifically, suppose

that the market-clearing price can be either high or low depending on realized market

demand. Then the number of periods in which buyers bid the low price diverges to in-

finity. However, the number of periods in which buyers bid low grows more slowly than

the rate at which the exit rate goes to zero. Therefore, bids become high suffi ciently

fast relative to the exit rate. This ascending bid pattern ensures that actual transaction

prices are equal to the sellers’costs if the realized state is such that the buyers are on the

short side of the market and actual transaction prices are equal to the buyers’valuations

if the buyers are on the long side of the market.

In the following section, we discuss our contribution to the literature. In Section 3

we introduce the model. We provide existence and uniqueness results for steady-state

equilibria in monotone bidding strategies in Section 4. We also provide some preliminary

characterization of equilibrium. Proving the existence of equilibrium is a non-trivial

problem in a search model with aggregate uncertainty because of the endogeneity of the

distribution of population characteristics (beliefs in our model); see Smith (2011). Some

techniques that we develop might be useful more generally. For example, we demonstrate

an interesting failure of the monotone likelihood ratio property in auctions with a random

number of bidders.4 Our main result on convergence to the competitive outcome is stated

in Section 5. We provide an extension to an economy with heterogeneous buyers in

Section 6. Section 7 provides a discussion of extensions and conclusion. Some technical

results about the steady-state stock and the proof of existence of equilibrium are relegated

to a supplementary online appendix.5

2 Contribution to the Literature

We contribute to a body of research that studies the foundations for general equilibrium

through the analysis of dynamic matching and bargaining games, which was initiated

by Rubinstein and Wolinsky (1985) and Gale (1987).6 A central question is whether a

4This is discussed in Section 1.3 of the online appendix.
5The online appendix is included in this submission but it is not intended for publication.
6For recent contributions, see for example Satterthwaite and Shneyerov (2008), Shneyerov and Wong

(2010), and Kunimoto and Serrano (2004) and the references therein.
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fully specified “decentralized”trading institution leads to outcomes that are competitive

when frictions of trade are small. Well-known negative results by Diamond (1971) and

Rubinstein and Wolinsky (1985) have demonstrated that this question is not trivial.

Studying foundations is important for positive theory in order to understand under

which conditions markets can and cannot be well approximated by competitive analysis,

and for normative theory in order to understand what trading institutions are able to

decentralize desirable allocations.7

In the early matching and bargaining literature, the preferences and endowments of

each individual trader were assumed to be observable. Thus, the problems of price dis-

covery and learning were absent. Satterthwaite and Shneyerov (2007, 2008) introduce a

model with private information, proving convergence to the competitive outcome. How-

ever, in their model the preferences are independently distributed among a continuum of

traders, and so the realized distribution of preferences– and, hence, market demand and

supply– is commonly known. Thus, in their model, there is idiosyncratic uncertainty

but there is no aggregate uncertainty.

Our paper is related to work on matching and bargaining with common values by

Wolinsky (1990) and later work by Blouin and Serrano (2001).8 This work on search

with common values provides negative convergence results. It uncovers a fundamental

problem of information aggregation through search: As frictions vanish, traders can

search and experiment at lower costs. This might seem to make information aggregation

simple. However, it also implies that traders increasingly insist on favorable terms– the

buyers on low prices and the sellers on high prices– turning the search market into “a

vast war of attrition” (Blouin and Serrano (2001, p. 324)). This insistence on extreme

positions makes information aggregation diffi cult even when search frictions are small.

In our model, the winner’s curse implies a similar effect: When the exit rate vanishes,

the buyers bid low and insist on a price equal to the sellers’cost for an increasingly large

number of periods. Yet, in our setting, this “insistence problem” is overcome by the

opposing loser’s curse, as discussed before.

There are two important differences from our paper, which might also explain the

divergent results. First, in models with common values, preferences depend on an un-

known state, and, consequently, these models are used to study foundations for Rational

Expectations Equilibria. By contrast, we study the microfoundations for competitive

equilibrium in a standard exchange economy (albeit a stylized, quasilinear one).9 Sec-

ond, in Wolinsky (1990) and Blouin and Serrano (2001) traders can choose only between
7For an excellent discussion of strategic foundations for general equilibrium, see the introductory

chapter in Gale (2000).
8Serrano and Yosha (1993) consider a related problem with one-sided private information and Gottardi

and Serrano (2005) consider a “hybrid”model of decentralized and centralized trading.
9 In our model, a common value component arises as well. However, it arises endogenously through

the equilibrium continuation payoffs.
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two price offers (bargaining postures). It is an open question whether trading outcomes

in these models are competitive if the frictions are small and if the restriction on the set

of prices is not imposed.10

Golosov, Lorenzoni and Tsyvinski (2011) consider a related model of search with

common values without this restriction on the set of price offers. They consider an

economy in which two divisible assets of unknown common value are traded. The friction

in their model is an exogenous probability that trading stops in any given period. They

show that equilibrium outcomes approximate ex-post effi cient outcomes in the event that

the game has not stopped for a suffi ciently large number of periods. However, Golosov

et al. study the trading outcome with a fixed, positive stopping probability. They do

not study the question whether outcomes become competitive in the “frictionless”limit

when the stopping probability is small, which is the question that motivates our paper.11

Shneyerov, Majumdar and Xie (2011) is the only other paper that considers a dy-

namic matching and bargaining game with uncertainty about market demand and supply.

Like us, Shneyerov et al. study the frictionless limit and show that, in the limit, out-

comes are approximately competitive. The main difference between the papers is the

dimension along which heterogeneity is introduced and how learning is modeled. We

consider buyers and sellers who have homogeneous preferences but who can hold a large

set of heterogeneous beliefs. Shneyerov et al. allow for heterogeneous preferences, but

they restrict the set of possible beliefs to place either probability one or probability zero

on each of two possible states. Specifically, they consider a model of “optimism”: Buyers

and sellers start with diametrically opposed priors, each believing that the state is in

their favor with probability one. Learning takes place by traders switching away from

probability one beliefs after observing events that have subjective probability zero.

There is a large body of related work on information aggregation in centralized in-

stitutions in which all traders simultaneously interact directly (see, e.g., the work on

large double auctions by Reny and Perry (2006) and Pesendorfer and Swinkels (1997,

2000)) and on the behavior of traders in financial markets (e.g., Kyle (1989), Ostrovsky

(2011) and Rostek and Weretka (2011)). The assumption of a central price formation

mechanism distinguishes this literature from dynamic matching and bargaining games

in which prices are determined in a decentralized manner through bargaining.

Finally, our work is related to the literature on social learning (Banerjee and Fu-

denberg (2004)), the recent work on information percolation in networks (Golub and

Jackson (2010)), and information percolation with random matching (Duffi e and Manso

(2007)). In the latter model, agents who are matched observe each other’s information.

10See the concluding discussion of the trading procedure in Blouin and Serrano (2001).
11As explained in Golosov et al., ex-post effi ciency of the outcome in the event that the game does not

stop does not imply that this is the rational expectations equilibrium relative to the initial allocation.
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In our model, the amount of information that one bidder learns from other traders is

endogenous and depends on the action (bid) that they choose.

3 Model and Equilibrium

3.1 Setup

There are a continuum of buyers and a continuum of sellers present in the market. In

periods t ∈ {...,−1, 0, 1, ...}, these traders exchange an indivisible, homogeneous good.
Each buyer demands one unit, and the buyers have a common valuation v for the good.

Each seller has one unit to trade. The common cost of selling is c = 0. Trading at price

p yields payoffs v − p and p − c, respectively. The valuation exceeds the cost, so there
are gains from trade. Buyers and sellers maximize expected payoffs.

Similar to Wolinsky (1990), there are two states of nature, a high state and a low

state w ∈ {H,L}. Both states are equally likely. The realized state of nature is fixed
throughout and unknown to the traders. For each realization of the state of nature,

we consider the corresponding steady-state outcome, indexed by w. The state of nature

determines the constant and exogenous number of new traders who enter the market (the

flow), and, indirectly, it also determines the constant and endogenous number of traders

in the market (the stock). In the low state, the mass of buyers entering each period is

dL, and, in the high state, it is dH . More buyers enter in the high state, dH > dL. The

mass of sellers who enter each period is the same in both states and is equal to one.

The buyers are characterized by their beliefs θ ∈ [0, 1], the probability that they

assign to the high state. In the following, we often refer to θ as the type of a buyer. Each

buyer who enters the market privately observes a noisy signal and forms a posterior based

on Bayesian updating. In state w, the posteriors of the entering buyers are assumed to

be distributed on the support [θ, θ], with cumulative distribution functions GH and GL,

respectively. The distributions are continuous and admit continuous probability density

functions, gH and gL. Notice that using Bayes’rule the distributions must be such that

θ = dHgH(θ)
dHgH(θ)+dLgL(θ)

, or, equivalently, the likelihood ratio satisfies

θ

1− θ =
dH

dL
gH (θ)

gL (θ)
.

For a buyer, the mere fact of entering the market contains news because the inflow is

larger in the high state. Conditional on entering the market, a buyer is pessimistic and

believes that the high state is more likely than the low state. This is expressed by the

likelihood ratio dH/dL > 1.12

12To formally define updating based on entering the market, suppose that there is a potential set of
buyers of mass d, d ≥ dH . In state w, a mass dw of the potential buyers actually enters the market.
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We assume that the lower and upper bounds of the support [θ, θ] are such that

1/2 ≤ θ < θ < 1. The assumption that 1/2 ≤ θ is needed to ensure monotonicity of

a certain posterior; see the remarks following Lemma 3. Substantively, this assumption

is consistent with signals being suffi ciently noisy, so that even the most favorable signal

θ is not strong enough to overturn the initial pessimism of an entering buyer. The

assumption θ̄ < 1 implies that signals are boundedly informative.13 Each period consists

of several steps:

1. Entry occurs (the “inflow”): A mass one of sellers and a mass dw of buyers enter

the market. The buyers privately observe signals, as described before.

2. Each buyer in the market (the “stock”) is randomly matched with one seller. A

seller is matched with a random number of buyers. The probability that a seller is

matched with k = 0, 1, 2, ... buyers is Poisson distributed14 and equal to e−µµk/k!,

where µ is the endogenous ratio of the mass of buyers to the mass of sellers in the

stock. We sometimes refer to µ as a measure of market “tightness.”The expected

number of buyers who are matched with each seller is equal to µ, of course.

3. Each seller runs a sealed-bid second-price auction with no reserve price. The buyers

do not observe how many other buyers are matched with the same seller. The bids

are not revealed ex post, so bidders learn only whether they have won with their

submitted bid.

4. A seller leaves the market if its good is sold; otherwise, the seller stays in the stock

with probability δ ∈ [0, 1) to offer its good in the next period. A winning buyer

pays the second highest bid, obtains the good, and leaves the market. A losing

buyer stays in the stock with probability δ and is matched with another seller in

the next period. Those who do not stay exit the market permanently. A trader

who exits the market without trading has a payoff of zero.

5. Upon losing, the remaining buyers update their beliefs based on the information

gained from losing with their submitted bids. The remaining buyers and sellers

who neither traded nor exited stay in the market. Together with the inflow, these

traders make up the stock for the next period.

On the individual level, the exit rate 1 − δ acts similar to a discount rate: Not

trading today creates a risk of losing trading opportunities with probability 1−δ. On the
Alternatively, one can simply interpret dH/dL as the prior of an entering buyer.
13We endow buyers with initial signals to ensure existence of a pure strategy equilibrium. Our results

hold even if the interval
[
θ, θ̄
]
is arbitrarily small and even if the initial signal is fully uninformative.

14This distribution is consistent with the idea that there are a large number of buyers who are inde-
pendently matched with sellers. The resulting distribution of the number of buyers matched with a seller
is binomial. When the number of buyers and sellers is large, the binomial distribution is approximated
by the Poisson distribution.

7



aggregate level, the exit rate ensures that a steady state exists for all strategy profiles; see

Nöldeke and Tröger (2009). Traders do not discount future payoffs beyond the implicit

discounting implied by the exit rate.

3.2 Steady-State Equilibrium

We study steady-state equilibria in stationary strategies so that the distribution of bids

depends only on the state and not on (calendar) time. An immediate consequence is

that in any period the set of optimal bids of a buyer depends only on the current belief

about the likelihood of being in the high state.

We restrict attention to symmetric and pure strategy equilibria where the bid is a

strictly increasing function of the belief of the buyer and where the distribution of beliefs

is suffi ciently “smooth,”as defined below. A symmetric steady-state equilibrium is a vec-

tor (ΓH ,ΓL, SH , DH , SL, DL, β, θ+). Next, we describe each of these components. First,

the distributions of beliefs are given by atomless cumulative distribution functions Γw.

Each function Γw is absolutely continuous and nondecreasing. Furthermore, we assume

that Γw is piecewise twice continuously differentiable.15 These assumptions ensure that

we can choose a density, denoted γw, that is right continuous on [0, 1).16

The masses of buyers and sellers in the stock are Dw and Sw. The bidding strategy β

is a strictly increasing function and maps beliefs from [0, 1] to nonnegative bids. We often

use the generalized inverse of β, given by β−1 (b) = inf {θ|β (θ) ≥ b}, where β−1 (b) = 1

if β (θ) < b for all θ. Finally, θ+(x, θ) is the posterior of a buyer with initial belief θ

conditional on losing against buyers with beliefs above x.

We characterize the equilibrium requirements for these objects; a formal definition

of equilibrium follows at the end of this section. Let θ(1) denote the first-order statistic

of beliefs in any given match. We set θ(1) = 0 if there is no bidder present. Γw(1) denotes

the c.d.f. of the first-order statistic in state w; that is, Γw(1) (x) is the probability that the

highest belief in the auction is below x. The event in which all the buyers have a belief

below x includes the event in which there are no buyers present at all. The probability

of this event is Γw(1) (0) by our assumption that there is no atom in the distribution of

beliefs at zero. The Poisson distribution implies Γw(1) (0) = e−µ
w
, where µw = Dw/Sw as

defined before. The fact that this probability is positive implies that the buyers must

have positive expected payoffs because any buyer has some probability of being the sole

15A function is piecewise twice continuously differentiable on [0, 1] if there is a partition of [0, 1] into a
countable collection of open intervals and points such that the function is twice continuously differentiable
on each open interval. Moreover, we require that the set of non-differentiable points has no accumulation
point except at one. Smoothness ensures that we can work conveniently with densities.
16We believe that these restrictions are without loss of generality. The restriction to symmetric and

pure strategies is without loss of generality by the uniqueness of the optimal bids, whenever belief
distributions are atomless and bidding strategies are strictly increasing. However, we have not been able
to show that all equilibria have these latter properties.
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bidder and receiving the good at a price of zero. In general, the first-order statistic of

the distribution of beliefs is given by

Γw(1) (θ) = e−µ
w(1−Γw(θ)). (1)

Intuitively, µw(1− Γw(θ)) is the ratio of the mass of buyers having belief above θ to the

mass of sellers, and e−µ
w(1−Γw(θ)) is the probability that the seller is matched with no

buyer having such belief. Let Γθ(1) (x) = θΓH(1) (x) + (1− θ)ΓL(1) (x) be the unconditional

probability that the highest belief is below x if the probability of the high state is θ.

We derive the posterior upon losing. Given the assumption that bidding strategies

are strictly increasing, losing with a bid b implies that there was some bidder in the

match with a belief above x = β−1 (b). Bayes’rule for the posterior θ+ requires that

θ+ (x, θ) =
θ(1− ΓH(1) (x))

1− Γθ(1) (x)
(2)

if 1 − Γθ(1) (x) > 0. Otherwise, we set θ+ (x, θ) ≡ sup{
(
θ+ (x′, θ)

)
| x′ : 1 − Γθ(1) (x′) >

0}, which is well defined by monotonicity of Γw(1). This particular choice of the “off-

equilibrium”belief does not affect our analysis.17

To derive the steady-state conditions for the stock, suppose that the mass of sellers

is Sw today. A seller trades if and only if matched with at least one buyer. Tomorrow’s

population of sellers therefore consists of the union of those sellers who were not matched

with any buyer and the newly entering sellers. In steady state, these two populations

must be identical, requiring

Sw = 1 + δΓw(1) (0)Sw. (3)

The inflow of buyers having type less than θ is dwGw(θ). The stationarity condition is

DwΓw (θ) = dwGw(θ) + δDw

∫
{τ :θ+(τ ,τ)≤θ}

(
1− Γw(1) (τ)

)
dΓw (τ) . (4)

The steady-state mass of buyers in the stock having a type below θ is equal to DwΓw (θ).

This mass has to be equal to the mass of the buyers in the inflow with type less than

θ (the first term on the right-hand side) plus the mass of buyers who lose, survive, and

update to some type less than θ (the second term).18

17When restricting beliefs to the two states of nature, we implicitly assume that following an off-
equilibrium event– the only such event is losing with a bid above the highest equilibrium bid– a buyer
continues to believe that all other buyers play according to their equilibrium strategies.
18For the purpose of this paper, the steady-state model is defined by (3) and (4). Formally, these

equations are taken as the primitives of our analysis and they are not derived from some stochastic
matching process. This allows us to avoid well-known measure theoretic problems with a continuum
of random variables. These problems can be solved, however, at the cost of additional complexity; see
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Let V (θ) denote the value function, which is equal to

max
b

vΓθ(1) (0) +

∫ β−1(b)

0+
(v − β (τ)) dΓθ(1) (τ) + δ(1− Γθ(1)

(
β−1 (b)

)
)V
(
θ+
)
, (5)

where θ+ = θ+
(
θ, β−1 (b)

)
. A bidding strategy β is optimal if b = β (θ) solves the

maximization problem (5) for every θ.

A steady-state equilibrium in symmetric, strictly increasing bidding strategies with

an atomless distribution of types (an equilibrium from now on) consists of (i) masses

of buyers and sellers, SH , DH , SL, DL, and distribution functions ΓH , ΓL such that the

steady-state conditions (3) and (4) hold for all θ; (ii) an updating function θ+ that

is consistent with Bayes’ rule (2); (iii) a strictly increasing bidding function β that is

optimal (maximizes (5)).

4 Characterization and Existence of Equilibrium

4.1 The Equilibrium Stock

The following lemmas establish necessary implications of equilibrium for the steady-state

stock. Generally, characterizing stocks in equilibrium search models is diffi cult because

of an intricate feedback between stocks and strategies, which requires determining these

two objects simultaneously. In our model, however, we can “decouple” the stock from

the strategies. This is because the bidding strategy is strictly increasing: The identity

of the winning bidder as well as the updated belief is the same for all strictly increasing

bidding strategies. We now describe properties of the stock, assuming (and verifying

later) that a monotone equilibrium exists. All proofs of the results from this section are

in the supplementary online appendix, with the exception of the proof of the following

lemma.

Lemma 1 (Unique Masses.) For each state w, there are unique masses of buyers Dw

and sellers Sw that satisfy the steady-state conditions. The market is tighter in the high

state; that is, D
H

SH
> DL

SL
.

The lemma is intuitive: The larger mass of buyers in the high state implies that

more buyers stay in the market because each buyer has a smaller chance to transact.

Moreover, each seller has a higher chance to transact in the high state, so the sellers leave

the market more quickly, and there are fewer sellers on the market in the high state.

Duffi e and Sun (2007).
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A distribution of beliefs is said to have the no-introspection property if

θ

1− θ =
DH

DL

γH (θ)

γL (θ)
(6)

for all θ < 1 with γL (θ) > 0. The condition implies that a buyer does not update based

merely on observing its own belief (“introspection”). The following lemma follows from

the steady-state conditions.

Lemma 2 (No-Introspection.) If Γw is an atomless and piecewise twice continuously

differentiable c.d.f. and if Γw satisfies the steady-state conditions given the steady-state

masses Sw, Dw, then Γw and Dw have the no-introspection property.

The distribution of beliefs satisfies the “monotone likelihood ratio property”(MLRP)

if γH
(
θ′′
)
γL
(
θ′
)
≥ γH

(
θ′
)
γL
(
θ′′
)
whenever θ′′ ≥ θ′. The no-introspection condition

implies the MLRP. Intuitively, observing a buyer with a higher belief makes the high

state more likely. The no-introspection condition also implies that the distributions ΓH

and ΓL have identical support, given that there are no atoms at zero or one.

We use the MLRP to characterize updating. Suppose that 0 < ΓL (θ) < 1. The

MLRP implies that 1 − ΓH (θ) > 1 − ΓL (θ). By Lemma 1, µH > µL. Therefore,

µH
(
1− ΓH (θ)

)
> µL

(
1− ΓL (θ)

)
, the expected number of buyers with belief above θ

who are matched with a seller is higher in the high state. From the definition of Γw(1),

1 − ΓH(1) (θ) > 1 − ΓL(1) (θ), the likelihood of losing is higher in the high state for any θ.

Hence, “losing is bad news,”and the posterior conditional on losing satisfies θ+ (x, θ) > θ

whenever 0 ≤ ΓL (x) < 1; see Definition (2). An implication is that all the buyers in

the stock must have beliefs above the most optimistic type in the inflow θ: All of those

buyers who have just entered hold beliefs above the cutoff θ. For all other buyers in the

stock who have entered at least one period before, the finding that θ+ (x, θ) > θ for all θ

implies that their beliefs are above θ as well. Therefore, all beliefs in the stock are above

the cutoff θ.19

We also need the posterior conditional on being tied when characterizing optimal

bidding. Conditional on state w, the density of the first-order statistic is γw(1) = Dw

Sw γ
wΓw(1).

The unconditional density is γθ(1) (x) = θγH(1) (x) + (1− θ)γL(1) (x). The posterior of type

θ after tying with a buyer with belief x at the top spot is

θ0 (x, θ) =
θγH(1) (x)

γθ(1) (x)
(7)

19This informal argument is verified in the proof of Lemma 4.

11



if γθ(1) (x) > 0.20 The next lemma establishes that updating is monotone.

Lemma 3 (Monotonicity of Posteriors.) Suppose that Γw is an atomless and piecewise

twice continuously differentiable c.d.f., (i) the monotone likelihood ratio property holds,

and (ii) µH ≥ µL > 0. Then, the posterior upon losing, θ+ (x, θ), is nondecreasing in

x. If, in addition, (iii) γH (θ) ≥ γL (θ) µL

µH
for all θ, then the posterior upon being tied,

θ0 (x, θ), is nondecreasing in x on [0, 1].

A standard suffi cient condition for monotonicity of the posteriors would be that the

first-order statistic θ(1) inherits the monotone likelihood ratio property of the parent

distribution of θ. However, in contrast to standard auction settings, the MLRP is not

inherited here because the first-order statistic is taken from a random number of random

variables.21

Given a symmetric equilibrium, the posterior conditional on losing is θ+ (θ, θ). An

implication of Lemma 3 is that this posterior is strictly increasing in θ. The same

holds for the posterior conditional on tying, θ0 (θ, θ). This follows from the fact that

conditions (i)– (iii) hold in equilibrium: Conditions (i) and (ii) follow from Lemma 2

and Lemma 1, respectively. For Condition (iii), note the following: The support of Γw

is a subset of [θ, 1]; see the previous remark following θ+ (x, θ) > θ. Therefore, the

no-introspection property from Lemma 2 and SH ≤ SL from Lemma 1 together imply
γH(θ)
γL(θ)

µH

µL
≥ γH(θ)

γL(θ)
DH

DL
≥ θ

1−θ . Finally, the assumption that θ ≥ 1/2 implies θ
1−θ ≥ 1; that

is, (iii) holds.

We show that the distribution of beliefs of buyers in the stock is unique. Together

with the previous finding that the mass of buyers and sellers is unique, the lemma implies

that there exists a unique steady-state stock.

Lemma 4 (Uniqueness of the Steady-State Distributions.) There exists a unique ab-
solutely continuous and piecewise twice continuously differentiable distribution Γw that

satisfies the steady-state conditions.

We describe the basic idea of the proof and some of the complications here. To

illustrate the construction and the uniqueness argument, let us suppose momentarily

that we have found some stock Γw, Dw, Sw that satisfies the steady-state conditions and

suppose further that the interval of initial beliefs [θ, θ] is suffi ciently small such that upon

updating, θ+ (θ, θ) > θ̄. Therefore, the set of beliefs of buyers who have lost once is above

20We extend the definition of the posterior to all types: If min
{

ΓL (x) ,ΓH (x)
}
< 1, we set

θ0 (x, θ) = inf{
(
θ0 (x′, θ)

)
|x′ ≥ x and γθ(1) (x) > 0} and if ΓL (x) = ΓH (x) = 1, we set θ0 (x, θ) =

sup{
(
θ0 (x′, θ)

)
|x′ ≤ x and γθ(1) (x) > 0}. Bidders do not observe whether they are tied, and the partic-

ular choice of the extension of Bayes’formula does not affect our analysis.
21We provide a detailed discussion of the failure of the MLRP of the first-order statistic with a random

number of bidders in our supplementary online appendix in Section 1.3.
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the interval of the initial beliefs. Consequently, the mass of buyers with beliefs below any

θ′ ∈ [θ, θ] is just the mass of such buyers in the inflow; that is, DwΓ
(
θ′
)

= dwGw
(
θ′
)
.

Moreover, the mass of buyers with beliefs above θ′ is Dw − dwGw
(
θ′
)
. Therefore, the

probability that a buyer with belief θ′ loses is e−(Dw−dwGw(θ′))/Sw in each state w. This

determines the posterior of θ′ after losing once, θ+
(
θ′, θ′

)
. Conversely, for any θ′′ from

the set of beliefs who lost once–
[
θ+ (θ, θ) , θ+

(
θ, θ
)]
– we can find the prior θ̂ such that

θ+(θ̂, θ̂) = θ′′. Taking our observations together, the distribution of beliefs of buyers who

have lost once is given by

DwΓw
(
θ′′
)

= dw + δdw
∫ θ̂

θ
e−(Dw−Gw(τ))/SwdGw (τ) ∀θ′′ ∈

[
θ+ (θ, θ) , θ+

(
θ, θ
)]
.

The above reasoning suggests that we can construct the population of buyers inductively,

starting with the distribution of initial beliefs and then proceeding to the distribution of

beliefs of buyers who have lost once, twice, ... and so on. Furthermore, the above argu-

ments suggest that the construction would yield a unique candidate for an equilibrium

steady-state stock.

The existence proof is based on induction, following the line of reasoning laid out

before. There are two diffi culties with the argument, however. First, we have assumed

that intervals of beliefs of successive generations of buyers do not overlap. This does

not need to be the case. To take care of this problem, we use the fact that the losing

probabilities of the lowest type θ are determined by the total masses Dw and Sw, which

are unique by Lemma 1. This determines the posterior θ+ (θ, θ) and implies that the

set of buyers with beliefs in
[
θ,min

{
θ+ (θ, θ) , θ̄

}]
is given by the inflow. We then

apply similar arguments successively. Second, the construction above uses the fact that

posteriors after losing are monotone in priors. However, the argument following Lemma

3 for monotonicity of θ+ presupposes the steady-state conditions to conclude that no-

introspection holds. When we prove the existence of a steady-state stock, we need to

directly ensure that the conditions of Lemma 3 hold, which is done in the main technical

lemma of the proof, Lemma 12.

4.2 Characterization of Bidding and Existence of Equilibrium

We characterize the equilibrium bidding strategy. Let

EU(θ, β|w) = vΓw(1) (0) +

∫ θ

θ
(v − β (τ)) dΓw(1) (τ) + δ

(
1− Γw(1) (θ)

)
EU(θ+ (θ, θ) , β|w)

denote the expected utility of a bidder with belief θ given a symmetric bidding strat-

egy β, conditional on state w. The unconditional expected payoff is EU(θ, β|θ̂) =

θ̂EU(θ, β|H) + (1 − θ̂)EU(θ, β|L). The function EU(θ, β|θ̂) can be interpreted as type
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θ̂’s expected (off-equilibrium) payoff from bidding like type θ.

We prove that equilibrium bids must be

β(θ) = v − δEU
(
θ+ (θ, θ) , β|θ0 (θ, θ)

)
. (8)

An intuition for this bidding strategy is as follows. By standard reasoning about bidding

in second-price auctions, the bid must be “truthful” and equal to the expected payoff

from winning conditional on being tied. Here, the expected payoff from winning is equal

to the valuation v minus the relevant continuation payoff. For the relevant continuation

payoff, note that the strategy adopted from tomorrow onwards is the optimal strategy

given the updated belief conditional on having lost, θ+ (θ, θ). We need to evaluate

the expected value of that strategy using the posterior conditional on being tied (the

“pivotal event”). Therefore, the expected continuation payoff is calculated by evaluating

the utility derived from the future bidding sequence of a bidder with belief θ+ (θ, θ), given

the posterior probability of the high state conditional on being tied, θ0 (θ, θ). Thus, the

relevant continuation payoff is δEU
(
θ+ (θ, θ) , β|θ0 (θ, θ)

)
, and buyers optimally “shade”

their bids by this amount.

We provide some auxiliary observations. First, the value function is convex in beliefs:

Optimal bidding is a decision problem under uncertainty, implying a convex value func-

tion by standard arguments from information economics. Second, the envelope theorem

dictates a simple relation between EU, V , and the derivative V ′.

Lemma 5 (Characterizing the Value Function.) The value function V (θ) is convex. At

all interior differentiable points of the value function, V ′ (θ) = ∂
∂θ̂
EU(θ, β|θ̂)|θ̂=θ, and

EU(θ, β|θ̂) = V (θ) + (θ̂ − θ)V ′ (θ) . (9)

The following Lemma establishes a unique candidate for the equilibrium bidding

function for given continuation payoffs. The lemma follows from rewriting the necessary

first-order condition for optimal bids; that is, we determine the derivative of the objective

function (5) with respect to b and set it equal to zero.

Lemma 6 (Equilibrium Candidate.) For almost all types in the support of the distrib-

ution of beliefs, in equilibrium

β(θ) = v − δV
(
θ+ (θ, θ)

)
+ δV ′

(
θ+ (θ, θ)

)
(θ+ (θ, θ)− θ0 (θ, θ)). (10)

We can use Lemma 5 to substitute EU for V ′ and V in equation (10). After the

substitution, the expression for the bidding strategy is as claimed in the equation (8).
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We have identified a unique candidate for the equilibrium bidding strategy for given

continuation payoffs in this section. We have also proven that there exists a unique

steady-state stock in Section 4.1. The following proposition shows that there exists an

equilibrium. The exogenous parameters– δ, dH , and dL– determine the market outcome

in an essentially unique way. The proof is in the online appendix.

Proposition 1 (Existence and Uniqueness of Equilibrium.) There exists a steady-state
equilibrium in strictly increasing strategies. The equilibrium distribution of beliefs and

the value function V (θ) are unique. For almost all types in the support of the distribution

of beliefs, the bidding function is β = v − δEU
(
θ+ (θ, θ) , β|θ0 (θ, θ)

)
.

5 Price Discovery with Small Frictions

We state and prove our main result: as the exit rate becomes small, the equilibrium

trading outcome becomes competitive in each state. In particular, all trade between

buyers and sellers takes place at the “correct,”market-clearing prices.

We define trading outcomes. For buyers, the trading outcome in state w consists of

the equilibrium probability of winning in an auction (instead of being forced to exit) and

the expected price paid conditional on winning, denoted qw (θ) and pw (θ), respectively.

For a seller, the trading outcome consists of a probability of being able to sell the good

and the expected price received, denoted qw (S) and pw (S). The inflow defines a large

quasilinear economy, where the mass of buyers is dw and the mass of sellers is independent

of w and equal to one. A trading outcome is said to be a (perfectly) competitive outcome

(or Walrasian outcome) relative to the economy defined by the inflow if prices and trading

probabilities are as follows. If dw < 1 (i.e., if buyers are on the short side of the market),

then pw (θ) = pw (S) = 0, qw (θ) = 1, and qw (S) = dw. If dw > 1 (i.e., if buyers are on

the long side of the market), then pw (θ) = pw (S) = v, qw (θ) = 1/dw, and qw (S) = 1.

We do not characterize the competitive outcome in the case in which both market sides

have equal size, dw = 1. If an outcome is competitive, it is necessarily an effi cient

outcome relative to the economy defined by the inflow.

We consider the trading outcome when the exit rate is small. Let {δk}∞k=1 be a

sequence such that the exit rate converges to zero, lim (1− δk) = 0. Intuitively, a smaller

exit rate corresponds to a smaller cost of searching. To interpret our results, it might be

helpful to observe that decreasing the exit rate is equivalent to increasing the speed of

matching.22 We know that an equilibrium exists for each δk. Pick any such equilibrium

22Let ∆k denote the length between time periods and let d denote the (fixed) exit probability per unit
of time. With 1− δk = ∆kd, one can interpret a decrease in the exit rate 1− δk as a decrease in ∆k. In
this interpretation, the market friction 1−δk arises because it takes time ∆k to come back to the market
after a loss. As this time lag ∆k goes to zero, the friction vanishes.
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and denote the corresponding equilibrium magnitudes by βk,Γ
H
k ,Γ

L
k , D

H
k ,p

w
k , q

w
k and so

on. A sequence of trading outcomes converges to the competitive outcome relative to the

economy defined by the inflow in state w if the sequence of outcomes converges pointwise

for all θ and for S.

Proposition 2 (Price Discovery with Small Frictions.) For any sequence of vanishing
exit rates and for any sequence of corresponding steady-state equilibria in strictly increas-

ing strategies the sequence of trading outcomes converges to the competitive outcome for

each state of nature.

We illustrate the proposition through a few observations. First, we restate the im-

plications of the proposition in terms of the limit of the value function.

Corollary 1 (Limit Payoffs.) For any sequence of equilibria for lim
k→∞

(1− δk) = 0:

lim
k→∞

Vk (θ) ≡ v if dL < dH < 1; lim
k→∞

Vk (θ) ≡ 0 if 1 < dL < dH ; and lim
k→∞

Vk (θ) =

(1− θ) v + θ0 if dL < 1 < dH .

The corollary is immediate and the proof is omitted. Intuitively, the short side of the

market captures the surplus from trading. Moreover, the corollary states that the value

function is no longer convex but linear in the limit. Information loses its value when the

friction of trade is small.

The following result is the main intermediate step towards proving the Proposition.

The lemma illustrates some of the main forces at work.

Lemma 7 (Limit Market Population.) For any sequence of equilibria for lim
k→∞

(1− δk) =

0 the following statements hold: (i)

lim
k→∞

Dw
k

Swk
=

{
0 if dw < 1

∞ if dw > 1.

(iia) If dw < 1, the probability of being the sole bidder becomes one, lim
k→∞

e−D
w
k /S

w
k = 1.

(iib) If dw > 1, the probability of being the sole bidder converges to zero and it converges

to zero faster than the exit probability, lim
k→∞

e−D
w
k /S

w
k

1−δk = 0.

In the following, we describe equilibrium when the exit rate is small. We consider

the case in which dL < 1 < dH . In that case, buyers are on the short side in the low

state and on the long side in the high state. The cases in which dH < 1 or dL > 1 are

less interesting because in these cases it is known whether the buyers or the sellers are

on the short side of the market.
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As stated in the previous lemma, the difference between the sizes of the market sides

in the inflow is magnified in the stock. Therefore, in the low state, the number of buyers

per seller vanishes to zero, and a buyer is almost sure to be the sole bidder. In the high

state, the number of buyers per seller diverges to infinity, and there is almost never only

a single bidder.

The fact that a buyer becomes sure to be the sole bidder in the low state has an

immediate implication: If a buyer is the sole bidder, the buyer wins and pays nothing.

Therefore, in the low state, payoffs must converge to v for all buyers. Consequently, the

characterization of the limit trading outcome conditional on the low state is relatively

straightforward. The corresponding fact for the high state has no immediate implication,

however. Even though a bidder becomes less and less likely to be the sole bidder, the

bidder also becomes more and more patient. If the bidder becomes patient fast enough,

the bidder could just wait to be the sole bidder and receive the good for free too. In the

second part of (iib), we show that this is not the case. Relative to the buyer’s increasing

patience, the probability of being the sole bidder converges to zero even faster. Therefore,

in the limit, a buyer who uses the strategy of always bidding lowest would almost surely

have to exit the market before being able to trade.

Let us discuss bidding. Lemma 7 implies that conditional on the high state buyers

learn that the state is high very quickly after entry, after losing only once. This is

because losing is very unlikely in the low state, but it is very likely in the high state.

However, optimal bids depend on the buyer’s belief conditional on being pivotal (tied

at the top). Therefore, we characterize beliefs conditional on being pivotal. As the next

result shows, being pivotal is very positive news, indicating that the low state is very

likely. Intuitively, the growing imbalance of the two sides of the market implies a very

strong winner’s curse.

Let θtk (θ) denote the posterior of a buyer who has entered the market with a prior θ

and who has lost t times. The following proposition characterizes θ0
k

(
θtk (θ) , θtk (θ)

)
, the

posterior conditional on being pivotal (tied at the top) after having lost t times before.

Proposition 3 (Time Pattern on Bids.) Suppose that dL < 1 < dH and suppose that

lim
k→∞

(1− δk) = 0. Let θtk = θtk (θ) for some θ ∈ [θ, θ].

(i) For any t, (a) lim
k→∞

θ0
k

(
θtk, θ

t
k

)
= 0, and (b) lim

k→∞
βk(θ

t
k) = 0.

(ii) Let tk ≡ −0.5
(1−δk) ln(1−δk) . Then, (a) lim

k→∞
θ0
k(θ

tk
k , θ

tk
k ) = 1, and (b) lim

k→∞
βk(θ

tk
k ) = v.

The proposition is not part of the proof of Proposition 2. In fact, we use findings

from the proof of Proposition 2 to prove it. We state the proposition because we believe

it provides some interesting insights into bidding when the exit rate is small.

As discussed previously, lim θtk (θ) = 1 as k → ∞ for all θ ∈ [θ, θ] and for all t ≥ 1;

that is, bidders who have lost at least once have a posterior that puts probability close to
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one on w = H. The first part of the proposition states, however, that the event of being

tied conditional on having belief θtk is suffi ciently “good news” such that the posterior

switches to putting probability zero on the high state. Therefore, conditional on being

tied, a buyer believes that the continuation payoff is close to v and, consequently, bids

zero. Two related and immediate consequences of Part (i) of Proposition 3 are that

when (1− δk) → 0, (a), fixing any time t, the bid of a buyer who has entered t periods

ago decreases to zero when (1− δk) decreases, and, (b), buyers bid close to zero for
an increasingly long time. This observation illustrates why proving convergence to the

competitive outcome is not immediate from the fact that the imbalance of the masses of

buyers and sellers in the stock explodes in the high state.

Of course, the finding from Proposition 2 requires that buyers stop bidding zero at

some time and bid close to v eventually. This is reflected in Part (ii) of Proposition 3.

The significance of that part is that the number tk is chosen so that lim (δk)
tk = 1 as

k → ∞: the probability of exogenous exit within tk periods is vanishing to zero. Part
(ii) states that after at most tk periods buyers are eventually suffi ciently pessimistic that

they bid high. The fact that lim (δk)
tk = 1 can be interpreted as saying that buyers start

bidding high “quickly”relative to the exit rate (1− δk).

Proposition 3 illustrates the combined effect of the winner’s and the loser’s curse.

Initial bids are predominantly shaped by the winner’s curse (buyers bid cautiously low

to avoid winning in the low state). Eventually, however, the loser’s curse is suffi ciently

strong so that after losing at most tk number of periods, buyers bid close to their maxi-

mum willingness to pay.

Proposition 3 illustrates how the presence of aggregate uncertainty affects bidding,

and, consequently, expected prices. We have conducted a preliminary analysis to com-

pare the expected price conditional on the high state in the current model with the

expected price in a model in which the state is known. Our analysis suggests that the

relative distance from the competitive price is much higher with aggregate uncertainty

than without. The reason is precisely the fact that with uncertainty the initial bids are

very low in the high state. However, we chose not to provide a complete analysis of

the relative speed of convergence because we believe this to be beyond the scope of this

paper.

6 Extension: Heterogeneous Buyers

Buyers in our model have one-dimensional types (beliefs). This is due to our assump-

tions that there is a binary state of nature and that the buyers have homogeneous

preferences. Assuming one-dimensional types makes our model tractable and explicitly

solvable. Specifically, this assumption enables us to provide an explicit characterization
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of the endogenous population of traders, and it allows us to use standard techniques

from auction theory to characterize bidding.

We now generalize our characterization result to a setting in which buyers have het-

erogeneous preferences. While we cannot prove existence of equilibrium, this extension

gives rise to a somewhat richer economic environment. For example, in our base model,

whether or not prices aggregate information has no consequence for welfare. Our model

shares this feature with many of the standard models of information aggregation in large

common value auctions; see, e.g., Milgrom (1979) and Pesendorfer and Swinkels (1997).

With heterogeneous preferences, information aggregation is consequential for effi ciency.23

We extend our model as follows. The mass of buyers who enter the market is either dL

or dH , where dL < dH , as before. However, buyers’valuations are now drawn from a finite

set V ⊂ [0, 1]. The share of buyers who have valuation v ∈ V is f (v) and
∑

v∈V f (v) = 1.

Each entering buyer privately observes a signal. The distribution of posteriors induced

by the signal is given by Gw, as before. Thus, we assume that valuations and signals are

independently and identically distributed conditional on w. The mass of the entering

sellers is one in either state. We consider only the case where dL > 1. We assume that

the distribution f is non-degenerate in the following sense. There are two marginal types

vL∗ and v
H
∗ and rationing variables r

L and rH , 0 < rw < 1, such that

dw(rwf (vw∗ ) +
∑
v>vw∗

f (v)) = 1, w ∈ {L,H} . (11)

In the competitive outcome (allocation) for the quasilinear economy defined by f and

dw, buyers with valuations above vw∗ receive the good. Buyers with valuation v
w
∗ are

rationed and only a share rw of these buyers receives the good. The competitive price

is pw∗ = vw∗ . We assume p
H
∗ > pL∗ . We omit the degenerate case in which (11) holds for

some vw∗ with r = 0. In that case, the competitive price need not be uniquely determined

by market clearing.

We consider monotone steady-state equilibria. Equilibria consist of a bidding strat-

egy β : V× [0, 1] → [0, 1], an updating rule θ+ (θ, b), and a steady-state population,

characterized by the mass of buyers and sellers, Dw and Sw, and a probability mea-

sure on types V× [0, 1] (valuations and beliefs), denoted by Φw. We restrict attention

to monotone equilibria, by which we mean that β (v, θ) is strictly increasing in v and

θ, and that θ+ is strictly increasing in θ and weakly increasing in b. Furthermore, we

assume that the marginal distribution of beliefs, Φw (θ|v), is atomless and we assume

that equilibrium bids are given by β (v, θ) = v − δEU
(
v, θ+ (θ, β (v, θ)) |θ0 (θ, β (v, θ))

)
,

where θ0 (θ, β (v, θ)) is the posterior conditional on being tied. We conjecture that there

23For example, Pesendorfer and Swinkels (2000). study effi ciency of a large double auction with
heterogeneous preferences.
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is an essentially unique steady-state equilibrium satisfying these requirements. However,

we have not been able to prove either existence of equilibrium or uniqueness.

Let qw (v, θ) denote the lifetime trading probability and let pw (v, θ) denote the ex-

pected price conditional on trading. Similarly, qw (v) =
∫
qw (v, θ) dGw (θ) and pw (v) =∫

pw (v, θ) dGw (θ). The monotonicity of the equilibrium implies that qw (v, θ) is nonde-

creasing in v and θ, and Vk (v, θ) is nondecreasing in v and nonincreasing in θ.

In the competitive outcome the buyers’trading probabilities are qw (v) = 0 for v <

vw∗ , q
w (vw∗ ) = rw, and qw (v) = 1 for v > vw∗ , the sellers’ trading probabilities are

qw (S) = 1, and the price is pw (v) = pw∗ for v ≥ vw∗ . Given a sequence of vanishing

exit rates {1− δk} → 0, suppose there is a sequence of monotone steady-state equilibria

with trading probabilities qwk and prices pwk . We say that the sequence of outcomes

converges to the competitive outcome if the trading probabilities and prices converge to

the competitive outcome.

Proposition 4 (Revealing Prices with Heterogeneous Buyers.) Consider an economy
with heterogeneous buyers. For any sequence of vanishing exit rates and for any sequence

of corresponding monotone steady-state equilibria, the sequence of trading outcomes con-

verges to the competitive outcome for each state of nature.

The proof is relegated to our online appendix. The proof involves two important

observations. First,
e−D

w
k Φwk ({(v,θ)|v≥vw∗ })/Swk

1− δk
→ 0; (12)

that is, the probability that a buyer ends up participating some time in an auction in

which there is no bidder present who has a valuation weakly above vw∗ vanishes to zero.

Intuitively, it becomes almost common knowledge that all bidders have valuations of at

least vw∗ . This observation is an important step towards showing that buyers bid up the

price to at least vw∗ ; that is, in state w, the price is at least p
w
∗ . Equation (12) follows from

the fact that there are more buyers with valuations weakly above vw∗ entering the market

than there are sellers entering. Thus, buyers having valuations v ≥ v∗w accumulate in

the stock. Note the similarity to the previous finding in Lemma 7, Part (ii). Second,

e−D
w
k Φwk ({(v,θ)|βk((v,θ))≥b′})/Swk

1− δk
→∞, ∀b′ > vw∗ ; (13)

that is, when a buyer keeps bidding b′ = vw∗ + ε, the buyer trades eventually with a

probability converging to one at a price that is at most b′. The second observation

implies that buyers pay at most pw∗ . Equation (13) follows from the fact that (i) only

buyers having valuation strictly above vw∗ bid higher than b
′ and that (ii) there are fewer

buyers having such values who enter the market than there are sellers.
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7 Discussion and Conclusion

7.1 Discussion of Assumptions and Extensions

Bid Disclosure. In our model, learning is “minimal”: losing buyers learn nothing

except that they lost. In our companion paper, Lauermann and Virag (2011), we ask

whether such nontransparent auctions would arise if each seller could individually choose

the auction format. We show that sellers have an incentive to hide information from the

buyers because of a “continuation value effect”: If bidders receive information when

losing, then they can refine their future bids, which raises the expected value of their

outside options. This leads to less aggressive bidding and lower revenues for the seller.

Countervailing the continuation value effect is the well-known linkage principle effect for

common value auctions. We study how these two effects determine the sellers’preferences

for information disclosure. For example, we show that the sellers do not have an incentive

to reveal any information about the submitted bids after the auction.

Multiple States. The assumption that there are two states of nature is a standard
method to ensure that learning is tractable. As explained in Section 6, the combination

of a binary state of nature and homogeneous preferences is what allows us to provide

an explicit characterization of the equilibrium. While we cannot extend our explicit

equilibrium characterization, we believe that our characterization of the limit trading

outcome extends to a variation in which there are multiple states of nature. Intuitively,

what matters is only whether or not buyers are on the long side of the market in the

inflow. Suppose there are M states and the mass of entering buyers is dm in state m,

ordered such that dm < dm+1. The mass of entering sellers is one. It is straightforward to

show that the outcome will be competitive in the limit for all those states where dm < 1.

For those state with dm > 1, we believe that the proof of Proposition 2 extends too; that

is, buyers bid up prices to v. However, we have not formally verified this conjecture.

Reservation Prices. In our model, the sellers do not set a reservation price. More
generally, the sellers take no actions.24 The absence of reservation prices lets us avoid

two modeling problems, Diamond’s paradox and multiplicity of equilibrium that is due

to freedom in assigning off-equilibrium beliefs.

Diamond’s paradox: Diamond (1971) found– roughly speaking– that if the sellers

have all the market power in a simple search model then the sellers can charge monopoly

24Note that in our model individual sellers do not have a strong incentive to set reservation prices when
the exit rate is small, because the expected winning bid is close to the buyers’maximum willingness to
pay in each state, given the continuation payoffs. For example, suppose we modify our model by giving
sellers the option to set a positive reservation price at a small cost. Then, for a suffi ciently small exit
rate, it would be an equilibrium for sellers to not use that option. Given that no seller sets a positive
reservation price, the resulting equilibrium outcome would be equivalent to the equilibrium outcome of
our original model. This argument depends, of course, on the cost of setting a reservation price being
large relative to the exit rate.
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prices. In our model, if the sellers can set reservation prices, a version of Diamond’s

paradox emerges, and in the unique equilibrium the bids and the reservation prices are

equal to the buyers’valuations. However, it is well known that Diamond’s paradox can

be avoided in richer search models. For example, Satterthwaite and Shneyerov (2008)

have shown that the paradox can be avoided by assuming that buyers have heterogeneous

valuations. We conjecture that this would be the case here, too; that is, there would be

nontrivial equilibria in a variation with reservation prices and heterogeneous valuations.

Multiplicity of equilibria: If the reservation price is observable, it becomes a signal of

the seller’s beliefs about the state of the market, and there is freedom in assigning beliefs

following off-equilibrium reservation prices. This freedom can then be used to support

multiple equilibria, possibly also equilibria that are not competitive in the limit. One

might be able to impose known refinements for signaling games and show the implications

of some reasonable refinement of beliefs for limit outcomes. The advantage of the current

model is that we do not need such refinements.

In summary, it might be possible to introduce reservation prices once the model is

further extended to heterogeneous buyers as in Section 6 (to avoid Diamond’s paradox)

and once some refinement is imposed (to select among the multiple equilibria that might

arise otherwise). However, including reservation prices makes the model considerably

more complex. We therefore chose not to include reservation prices.

7.2 Conclusion

We provide a framework to study price discovery through trading in a decentralized

market. In our model, buyers learn about the relative scarcity of a good through repeated

bidding in auctions. In particular, individual traders never observe the whole market and

they directly interact only with small groups of traders. We characterize the resulting

distribution of beliefs in the population, the learning process, and the bidding behavior

of buyers. Despite the fact that there is no centralized price formation mechanism,

we show that the equilibrium trading outcome is approximately Walrasian when the

exit rate is small and search becomes cheap. Thus, prices reveal aggregate scarcity

and correctly reflect economic value. We discussed possible extensions of our model.

A particularly interesting question for further research might be the effect of aggregate

uncertainty on the speed of convergence. Because we provide an explicit characterization

of equilibrium, our model might be well suited to study this question. We conjecture that

whenever there is uncertainty about the market-clearing price, the outcome is further

away from the competitive outcome for small frictions than when the market-clearing

price is commonly known ex ante.

We have emphasized the analysis of trading outcomes with small frictions and related

our work to research that studies foundations for general equilibrium. Nevertheless, we
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also provide a complete characterization of equilibrium bidding and learning for all level

of frictions. We believe that our model is a first step towards a tractable framework

to study the search behavior of agents who learn about the economy in an equilibrium

analysis. Such a framework has been lacking so far. Search theory has proven to be a

remarkably useful tool for studying important decentralized markets, such as those for

housing, certain financial assets, and labor. However, little progress has been made in

incorporating the possibility of learning, which has limited the applicability of search

theory. Rothschild (1974) criticized early on that “the results [from search theory] de-

pend on the untenable assumption that searchers know the probability distribution from

which they are searching,”(p. 689) and he writes further that “it seems absurd to sup-

pose that consumers know them [the price distributions] with any reasonable degree of

accuracy”(p692).25 Beyond their conceptual importance, equilibrium models of search

with learning may also be helpful in explaining some empirical findings. For example,

standard models of search assume that searchers know the actual distribution that they

are sampling and from have diffi culties explaining observed large dispersions of accepted

prices and wages. Equilibrium models of search with learning provide a potential ex-

planation because searchers with different beliefs about the prevailing market conditions

have different acceptance behavior, adding a novel source of heterogeneity.

25Rothschild (1974) himself and subsequent work has characterized optimal rules for sampling from
unknown distributions. However, these are models of single-person decision problems where the distri-
bution of prices is exogenous instead of equilibrium search models. This restriction arose presumably
because of the diffi culties associated with developing tractable model of equilibrium search with learning.
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8 Appendix

This appendix contains the proofs of our main results from Section 5 (Price Discovery

with Small Frictions). The proofs of the results from Section 4 (Characterization and

Existence of Equilibrium) and Section 6 (Extension: Heterogeneous Buyers) are con-

tained in an Online Appendix. The exceptions are the proofs of Lemma 1 (Unique
Masses), Lemma 5 (Envelope Theorem) and Lemma 6 (Characterizing the Equilibrium

Bidding) which we give here, too. We keep these three proofs in the regular appendix

because we use elements from these proofs when showing convergence and because the

characterization of the equilibrium bids is a cornerstone of our convergence proof.

8.1 Proof of Lemma 1 (Uniqueness of Masses)

We show that the steady-state conditions for the stocks can be written as:

dw = (1− δ)Dw + δSw
(

1− e−Dw/Sw
)

(14)

1 = (1− δ)Sw + δSw
(

1− e−Dw/Sw
)
. (15)

These conditions have a simple interpretation: the left-hand side is the inflow for each

market side. The right-hand side is outflow from each market side, that is, the sum of

the number of traders who exit through discouragement and the number of traders who

exit through trade. The number of traders who exit through trade is Sw
(
1− e−Dw/Sw

)
,

which is equal for both market sides.

Rewriting the steady-state condition for buyers, (4),

Dw = dw + δDw

∫ 1

0

(
1− e−Dw(1−Γw(θ))/Sw

)
dΓw (θ)

= dw + δDw − δDw

∫ 1

0

∂

∂θ

(
Swe−D

w(1−Γw(θ))/Sw
)
dθ

= dw + δDw − δSw
(

1− e−Dw/Sw
)
.

Recall the steady-state condition for sellers, (3), Sw = 1 + δSwe−D
w/Sw . Rewriting the

steady-state conditions further yields (14) and (15).

A solution to the steady-state conditions exists, and the solution is unique. The

difference of (14) and (15),

dw − 1 = (1− δ) (Dw − Sw) , (16)
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defines Dw as a function of Sw, J (Sw). We can write (15) as a function of Sw only,

1 = (1− δ)Sw + δSw
(

1− e−J(Sw)/Sw
)
.

This equation has a solution by the intermediate value theorem. At Sw → 0, the right-

hand side becomes zero, while for Sw →∞, the right-hand side becomes infinite (recall
that

(
1− e−J(Sw)/Sw

)
∈ [0, 1]). A solution exists in between.

The solution is unique. Let S′w, D′w and S′′w,D′′w be two solutions, and suppose

that D′′w ≥ D′w. Then, by (16), S′′w ≥ S′w. We can show that (15) and S′′w > S′w

leads to a contradiction. Hence, it must be that S′′w = S′w, which implies D′′w = D′w

by (16). The contradiction arises as follows. The first term of (15) is trivially strictly

increasing in Sw. The second term (15) is also increasing in Sw and in Dw, which can

be seen by inspection of the derivatives,26

∂

∂Sw

(
Sw
(

1− e−Dw/Sw
))

=
(

1− e−Dw/Sw
)
− Dw

Sw
e−D

w/Sw ≥ 0

∂

∂Dw

(
Sw
(

1− e−Dw/Sw
))

= e−D
w/Sw > 0.

Thus, if (15) holds for S′w, it cannot also hold for S′′w > S′w. Intuitively, if the number

of buyers and sellers is higher, then (i) more sellers exit due to discouragement (the first

term) and (ii) more sellers trade (the second term) because there are simply more sellers

(the first derivative is positive) and, in addition, the number of buyers increases and so

less sellers have no bidders (the second derivative is positive).

By assumption, dH > dL. We show that this implies DH > DL and SL < SH .

First, it cannot be that both the number of sellers and the number of buyers increases

(or decreases) when the state is changed from L to H. By our earlier observation, if

both, the number of sellers and buyers increases, then the right-hand side of (15) would

strictly increase, leading to a failure of the equation. Similarly, the right-hand side of

(15) would strictly decrease if both market sides shrink. Because dH > dL, inspection

of (16) shows that the difference
(
DH − SH

)
>
(
DL − SL

)
. Hence, it cannot be that

the buyers’market side weakly decreases while the sellers’market side weakly increases.

Therefore, DH > DL and SL < SH , as claimed. QED.

26Let x = Dw/Sw. The first inequality follows if 1
x

(
1− e−x

)
≥ e−x. This inequality holds if ex−1 ≥ x,

which is true, since, at zero, e0 − 1 ≥ 0, and for x > 0, (ex − 1− x)′ = ex − 1 ≥ 0.
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8.2 Proof of Lemma 5 (Envelope Theorem)

Convexity follows from a standard argument. By definition, V (θ) = EU (θ, β|θ). With
θα = (αθ′ + (1− α) θ′′),

V (αθ′ + (1− α) θ′′) = αEU
(
θα, β|θ′

)
+ (1− α)EU

(
θα, β|θ′′

)
≤ αEU

(
θ′, β|θ′

)
+ (1− α)EU

(
θ′′, β|θ′′

)
= αV

(
θ′
)

+ (1− α)V
(
θ′′
)
.

The equalities follow by definition of EU and V and linearity of EU . The inequality

follows from optimality of β.

The envelope formula follows from standard arguments as well: (i) optimality requires

EU(θ, β|θ̂) ≤ EU(θ̂, β|θ̂) for all θ, θ̂ and (ii) EU(θ, β|θ̂) is differentiable everywhere in
θ̂. Hence, Theorem 1 by Milgrom and Segal (2002) implies V ′ (θ) = ∂

∂θ̂
EU(θ, β|θ̂)|θ̂=θ at

interior differentiable points of V . Linearity of EU(θ, β|θ̂) in θ̂ implies that EU(θ, β|θ̂) =

EU(θ, β|θ) + (θ̂ − θ)∂EU(θ,β|θ̂)
∂θ̂

|θ̂=θ. Together, (9) follows. QED.

8.3 Proof of Lemma 6 (Equilibrium Candidate).

The derivative of the objective function (5) is

β−1′(β(x))(γθ(1)(v−β(x)−δV
(
θ+ (x, θ)

)
)+δ(1−Γθ(1) (x))V ′

(
θ+ (x, θ)

) ∂θ+ (x, θ)

∂x
). (17)

The derivative exists for almost every type in the support of Γw. The optimal bid for

almost all types is characterized by the first-order condition (17)= 0.

Note that

∂θ+ (x, θ)

∂x
=
−θγH(1) (x) (1− Γθ(1) (x)) + γθ(1) (x) θ(1− ΓH(1) (x))

(1− Γθ(1) (x))2
. (18)

Further,

γθ(1) (x) θ(1− ΓH(1) (x))

1− Γθ(1) (x)
− θγH(1) (x) = γθ(1) (x) (θ+ (x, θ)− θ0 (x, θ)) (19)

by the definitions of θ+ and θ0 (x, θ). Using (18) and (19), the necessary first-order

condition (17)= 0 can be rewritten as (10). QED

8.4 Proof of Proposition 2: Price Discovery

The proposition follows from a sequence of lemmas. We start by proving Lemma 7.
Recall Equation (16),

Swk = Dw
k −

dw − 1

1− δk
. (20)
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Substituting (20) into (15) yields

1− e−Dwk /Swk =
1− (1− δk)Swk

δkS
w
k

= 1 +
1− Swk
δkS

w
k

. (21)

We can solve this equation for Dw
k to obtain

Dw
k = −Swk ln

Swk − 1

δkS
w
k

. (22)

Case 1: dw < 1. In this case, lim dw−1
1−δk = −∞, so that (20) implies lim(Swk −Dw

k ) =

∞; hence, limSwk = ∞. This implies that the right—most side of (21) converges to 0.

Therefore, the limit of the left-most side lim
(
1− e−Dwk /Swk

)
= 0, that is,

lim
k→∞

µwk = lim
k→∞

Dw
k /S

w
k = 0,

as claimed. From the steady-state condition for buyers, (4), Dw
k ≥ dw. Reordering terms

and evaluating the integral on the right-hand side of (4) at zero,

dw ≥ (1− δk)Dw
k + δkD

w
k Γwk,(1) (0) = (1− δk)Dw

k + δkD
w
k e
−µk .

Taking limits on the last two inequalities implies

lim
k→∞

Dw
k ≥ dw ≥ lim

k→∞
Dw
k e
−µk = lim

k→∞
Dw
k .

Hence, limDw
k = dw, as claimed. Therefore, from (20) it follows that

lim
k→∞

(1− δk)Swk = 1− dw. (23)

Letting µwk = Dw
k /S

w
k , it follows from (22) and (23) that

lim
k→∞

µwk
1− δk

=
dw

1− dw . (24)

Case 2: dw > 1. From (20), it follows that limDw
k − Swk = ∞; thus, limDw

k = ∞.
Then, (22) implies that limSwk = 1.27 This implies that µwk →∞. The rest of the proof
27To see this, note that if limSwk > 1, but finite was true, then (22) would imply that limDw

k < ∞,
a contradiction with what we have already established above. If limSwk = ∞, then log

Swk −1
δkS

w
k
→ 0, and

therefore, by (22), limµwk = limDw
k /S

w
k = 0, which contradicts limDw

k − Swk = ∞ > 0. Therefore,
limSwk = 1 must hold.
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establishes that lim 1−δk
e
−µw

k
=∞. Using (20) and limSwk = 1 yields that

lim
k→∞

(1− δk)Dw
k = dw − 1. (25)

Formula (25) and limSwk = 1 imply that

lim
k→∞

(1− δk)µwk = dw − 1. (26)

Finally, using (26) implies that lim 1−δk
e
−µw

k
= lim(1−δk)eµ

w
k = (dw−1) lim eµ

w
k

µw
k

=∞. QED .

Let qwk (θ) denote the lifetime trading probability of a buyer having type θ,

qwk (θ) = (1− ξwk (θ))+δkξ
w
k (θ)

(
1− ξwk

(
θ1
k (θ)

))
+δ2

kξ
w
k (θ) ξwk

(
θ1
k (θ)

) (
1− ξwk

(
θ2
k (θ)

))
+···

where 1 − ξwk (θ) denotes the probability that a buyer with type θ trades in any given

period, and θtk (θ) denotes the posterior of a buyer with a prior θ who has lost t times.

The steady-state conditions imply a bound on the average expected trading probability:

Lemma 8 The average expected lifetime trading probability is bounded by the ratio of the
number of entering sellers to the number of entering buyers,

∫ θ
θ q

w
k (θ) dGw (θ) ≤ 1/dw.

Moreover, if 1 < dw, then the average expected trading probability lim
k→∞

∫ θ
θ q

w
k (θ) dGw (θ) =

1/dw.

Proof: Let
(
θtk
)−1 (

θ′
)
be the generalized inverse,

(
θtk
)−1 (

θ′
)

= sup
{
θ|θtk (θ) ≤ θ′

}
.

The steady-state conditions require that for every θ

Dw
k Γwk (θ) = dw(

∫ θ

0
dGw (τ) + δk

∫ (θ1k)
−1

(θ)

0
ξwk (τ) dGw (τ)

+δ2
k

∫ (θ2k)
−1

(θ)

0
ξwk (τ) ξwk

(
θ1
k (τ)

)
dGw (τ) + · · ·. (27)

By the fundamental theorem of calculus for Lebesgue integration, we can multiply the

above identity with 1− ξwk (τ) point-by-point, which yields

Dw
k

∫ θ

0
(1− ξwk (τ)) dΓwk (τ)

= dw(

∫ θ

0
(1− ξwk (τ)) dGw (τ) + δk

∫ (θ1k)
−1

(θ)

0

(
1− ξwk

(
θ1
k (τ)

))
ξwk (τ) dGw (τ) + ...
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Evaluating at θ = 1 and using the definition of qwk (θ) to simplify the right-hand side

Dw
k

∫ 1

0
(1− ξwk (τ)) dΓwk (τ) = dw(

∫ 1

0
((1− ξwk (τ)) + δk

(
1− ξwk

(
θ1
k (τ)

))
ξwk (τ) +

+δ2
k

(
1− ξwk

(
θ2
k (τ)

))
ξwk (τ) ξwk

(
θ1
k (τ)

)
+ ...)dGw (τ)

= dw
∫ 1

0
qwk (θ) dGw (θ) .

As shown in the proof of Lemma 1, Dw
k

∫ 1
0 (1− ξwk (τ)) dΓwk (τ) = Swk

(
1− e−Dwk /Swk

)
, the

total mass of buyers who trade in any period is equal to the total mass of sellers who trade.

Rewriting the steady-state condition for the sellers, (3), implies 1 = Swk
(
1− δke−D

w
k /S

w
k

)
.

Because 1 ≥ δk, 1 ≥ Swk
(
1− e−Dwk /Swk

)
. Taken together, we have shown the following

chain of (in-)equalities, which proves the first claim of the lemma:

1 ≥ Swk
(

1− e−Dwk /Swk
)

= Dw
k

∫ 1

0
(1− ξwk (τ)) dΓwk (τ) = dw

∫ 1

0
qwk (θ) dGw (θ) . (28)

Equation (15) implies that if dw > 1, then Swk
(
1− e−Dwk /Swk

)
→ 1. Taking limits on the

last three equalities in (28) implies the second claim of the lemma,

1 = lim
k→∞

Swk

(
1− e−Dwk /Swk

)
= lim

k→∞
dw
∫ 1

0
qwk (θ) dGw (θ) QED.

The following Lemma strengthens the finding of Lemma 8 for a special case.

Lemma 9 Suppose that dH > 1 and dL < 1. Then, for all θ ∈ [θ, θ]

lim
k→∞

qHk (θ) = 1/dH .

Proof: First, the trading probability is monotone in the type: Let θl < θh and let
{
θtl
}∞
t=0

and
{
θth
}∞
t=0

be the sequence of updated beliefs after losing t times. By monotonicity

of θ+
k , θ

t
l < θth for all t; hence, βk

(
θtl
)
< β

(
θth
)
for all t. Therefore, the probability of

winning in any given period after having lost t times, 1− ξwk
(
θtl
)
< 1− ξwk

(
θth
)
for all t;

hence,

qwk (θl) =
(
1− ξwk

(
θ0
l

))
+ δkξ

w
k

(
θ0
l

) (
1− ξwk

(
θ1
l

))
+ δ2

kξ
w
k

(
θ1
l

)
ξwk
((
θ0
l

))
....

< qwk (θh) =
(
1− ξwk

(
θ0
h

))
+ δkξ

w
k

(
θ0
h

) (
1− ξwk

(
θ1
h

))
+ δ2

kξ
w
k

(
θ1
h

)
ξwk
((
θ0
h

))
.... .

The posterior of the most optimistic new buyer after losing once becomes one, θ1
k (θ) =

θ+
k (θ, θ) → 1, since the likelihood ratio of losing 1−e−D

H
k /S

H
k

1−e−D
L
k
/SL
k
→ ∞ by Lemma 7. This

implies that lim θ+
k (θ, θ) > θ. Hence, by the monotonicity of the trading probability, we
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can “sandwich”the trading probability of all θ ∈
[
θ, θ
]
for suffi ciently large k,

qHk
(
θ+
k (θ, θ)

)
≥ qHk (θ) ≥ qHk (θ) ∀ θ ∈ [θ, θ], k large. (29)

Using (29) and Lemma 8,

lim
k→∞

inf

∫ θ

θ
qHk
(
θ+
k (θ, θ)

)
dGH (θ) (30)

≥ lim
k→∞

∫ θ

θ
qHk (θ) dGH (θ) = 1/dH ≥ lim

k→∞
sup

∫ θ

θ
qHk (θ) dGH (θ) .

By construction, qHk (θ) ≥ δkq
H
k

(
θ+
k (θ, θ)

)
. By monotonicity of θ+ and monotonic-

ity of qHk , q
H
k (θ) ≤ qHk

(
θ+
k (θ, θ)

)
. Therefore, the difference qHk

(
θ+
k (θ, θ)

)
− qHk (θ) ∈

[0, 1− δk]. When δk → 1, lim
(
qHk
(
θ+
k (θ, θ)

)
− qHk (θ)

)
= 0 (the expected trading prob-

ability with the initial type θ and the expected trading probability after updating once

become the same). Hence, lim inf qHk
(
θ+
k (θ, θ)

)
≤ lim sup qHk (θ). This inequality to-

gether with the inequalities (30) implies

lim
k→∞

qHk
(
θ+
k (θ, θ)

)
= 1/dH = lim

k→∞
qHk (θ);

(recall,
∫ θ
θ dG

H (θ) = 1). Hence, (29) implies lim qHk (θ) = 1/dH for all θ ∈
[
θ, θ
]
. QED .

We prove that trading probabilities satisfy the conditions of Proposition 2.

Lemma 10 Trading probabilities satisfy:

lim
k→∞

qwk (θ) =

{
1 if dw < 1
1
dw if dw > 1

and lim
k→∞

qwk (S) =

{
dw if dw < 1

1 if dw > 1.

Proof: For buyers: If dw < 1, then lim
k→∞

qwk (θ) = 1 is immediate from Lemma 7. We

have argued that lim
k→∞

qwk (θ) = 1
dw if d

w > 1 for the case w = H and dL < 1 in Lemma 9.

The case in which in both states dw > 1 follows from the steady-state conditions along

similar lines. We omit the proof of that case.

For sellers: The trading probability is recursively defined as qwk (S) = 1− e−Dwk /Swk +

δke
−Dwk /Swk qwk (S). If dw > 1, then lim

k→∞
qwk (S) = 1 follows from Dw

k /S
w
k → ∞, shown in

Lemma 7.

If dw < 1, then (23) implies (1 − δk)Swk = 1 − dw. From the steady-state condition,

(15),

1 = (1− δk)Swk + δkS
w
k

(
1− e−Dwk /Swk

)
.

Rewriting the definition of qwk (S), 1 − e−D
w
k /S

w
k =

(1−δk)qwk (S)

1−δkqwk (S) , substituting into the
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steady-state condition, and taking limits,

1 = lim (1− δk)Swk + lim δkS
w
k

(1− δk) qwk (S)

1− δkqwk (S)
= 1− dw + (1− dw) lim

qwk (S)

1− qwk (S)
,

from which lim qwk (S) = dw follows, as claimed. QED.

Let qwk (θ, b′) denote the probability that a type θ eventually ends up trading at

a price p ≤ b′, and let θk denote the highest type in the stock who bids below b′,

θk = sup {θ|βk ≤ b′, θ ∈ suppΓwk } (if there is no such type, θk = 0). The probability

qwk (θ, b′) is defined as

qwk
(
θ, b′

)
= (1− ξwk (min {θk, θ})) + δk (1− ξwk (θ)) ξwk

(
min

{
θk, θ

1
k (θ)

})
+δ2

k (1− ξwk (θ))
(
1− ξwk

(
θ1
k (θ)

))
ξwk
(
min

{
θk, θ

2
k (θ)

})
+ ...,

where we need to use (min {θk, θ}) because βk (θ) might be below b′; that is, θ < θk.

Let V = limVk(1). We show that the expected price conditional on winning becomes

equal to v − V̄ . To show this, we want to prove that if a bidder wins with some bid

with positive probability, the second highest bidder bids almost surely β = v − V̄ (no

bidder would bid higher). The proof works as follows: If there is a positive chance to

win against a buyer with a belief θ′, then the posterior of this buyer conditional on being

tied must converge to one; formally,

∀
{
θ′k
}

: lim qHk
(
θ, βk

(
θ′k
))
> 0⇒ lim θ0

k

(
θ′k, θ

′
k

)
= 1.

Because θ0
k

(
θ′k, θ

′
k

)
→ 1, the bid βk

(
θ′k
)
is shown to converge to limVk(1) = V̄ .

Lemma 11 Suppose that dH > 1 and dL < 1. Let V = lim
k→∞

Vk(1). For any type

θ ∈ [θ, θ] the expected price conditional on winning in the high state converges to v − V̄ ,
lim
k→∞

Ek [p, θ|H] = v − V .

Proof: Suppose that there are some b′ and θ∗ ∈
[
θ, θ̄
]
such that qHk (θ∗, b′) converges to

some positive number along some subsequence,

dH lim
k→∞

inf qHk
(
θ∗, b′

)
= ε > 0. (31)

We prove that this implies b′ ≥ v − V̄ . This implies the claim.
Let θk ≡ sup {θ|βk (θ) ≤ b′}. We prove that (31) implies

lim
k→∞

inf(1− ξHk (θk))D
H
k ≥ ε. (32)

We are done if lim inf ξHk (θk) < 1. So, suppose that ξHk (θk) → 1. The inequality now
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follows from the following chain of equations. For k suffi ciently large,

ε ≤ dH(1− ξHk (θk)) + δkd
H
(
1− ξHk (θk)

)
ξHk
(
θ1
k (θ)

)
+ δ2

k

(
1− ξHk (θk)

)
....

= dH(1− ξHk (θk)) + δkd
H
(
1− ξHk (θk)

) [
ξHk
(
θ1
k (θ)

)
+ δkξ

H
k

(
θ1
k (θ)

)
ξHk
(
θ2
k (θ)

)
+ ....

]
≤ dH(1− ξHk (θk)) + δkd

H
(
1− ξHk (θk)

) [
ξHk
(
θ̄
)

+ δkξ
H
k

(
θ1
k

(
θ̄
))
ξHk
(
θ̄
)

+ ....
]
,

where the first inequality comes from the definition of qHk and the second inequality

comes from θ1
k (θ) → 1 > θ and ξHk being nonincreasing. Integrating both sides with

respect to GH , taking limits with k → ∞, and noting that ξHk (θk) → 1, we rewrite

further

lim inf
(
1− ξHk (θk)

)
dH
∫ 1

0

[
ξHk
(
θ̄
)

+ δkξ
H
k

(
θ1
k

(
θ̄
))
ξHk
(
θ̄
)

+ ....
]
dGH

≤ lim inf
(
1− ξHk (θk)

)
dH
∫ 1

0

[
1 + δkξ

H
k (τ) + ....

]
dGH (τ)

= lim
(
1− ξHk (θk)

)
DH
k .

where we used that ξHk is nonincreasing, ξHk
(
θ̄
)
→ 1, and the steady-state conditions.

Together, the two displayed chains of equations imply the desired inequality (32).

We expand (32) using the definition of ξwk ,

lim inf
k→∞

DH
k e
−DHk (1−ΓHk (θk))/SHk ≥ ε. (33)

Equation (33) implies that lim
k→∞

ΓHk (θk) = 1: Otherwise, if lim supΓHk (θk) < 1 were

true, SHk → 1 and DH
k → ∞ would imply that lim inf DH

k e
−DHk (1−ΓHk (θk))/SHk = 0 by

l’Hospital’s rule,28 contradicting (33). Using DL
k → dL < 1, we obtain that

lim supDL
k ΓLk (θk) e

−DLk (1−ΓLk (θk)/SLk ≤ 1.

Hence,

lim inf
k→∞

DH
k ΓHk (θk) e

−DHk (1−ΓHk (θk)/SHk

DL
k ΓLk (θk) e

−DLk (1−ΓLk (θk)/SLk
≥ ε. (34)

The likelihood ratio of tying satisfies

θ0
k (θk)

1− θ0
k (θk)

=
θk

1− θk
γHk (θk)

γLk (θk)

DH
k

DL
k

SLk
SHk

e−D
H
k (1−ΓHk (θk)/SHk

e−D
L
k (1−ΓLk (θk))/SLk

≥ θk
1− θk

ΓHk (θk)

ΓLk (θk)

DH
k

DL
k

SLk
SHk

e−D
H
k (1−ΓHk (θk))/SHk

e−D
L
k (1−ΓLk (θk))/SLk

.

28Let xk = DH
k and ck = (1 − ΓHk (θk))/SHk . Using l’Hospital’s rule, lim inf xke

−xkck = 0 if xk → ∞
and lim inf ck > 0. Hence, ck = (1 − ΓHk (θk))/SHk must converge to 0. From before, SHk → 1, so this
requires ΓHk (θk)→ 1.
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The inequality follows from the MLRP of Γw, γ
H
k (θk)

γLk (θk)
≥ ΓHk (θk)

ΓLk (θk)
. Using (34) (for the first

inequality) and using SLk
SHk
→∞ (for the second equality),

lim
k→∞

inf
θ0
k (θk)

1− θ0
k (θk)

≥ ε lim
k→∞

inf
θk

1− θk
SLk
SHk

=∞. (35)

Therefore, the posterior θ0
k (θk, θk)→ 1.

We show that θ0
k (θk, θk) → 1 implies that βk (θk) → v − V̄ ; that is, b′ = v − V̄ , as

claimed in the beginning. From Lemma 15, βk (θk) = v−δkEU
(
θ+
k (θk, θk) , βk|θ0

k (θk, θk)
)
.

By θ+
k (θk, θk) → 1 and because the sequence of payoffs EU

(
θ, βk|θ′

)
is Lipschitz con-

tinuous in θ′ with a uniform Lipschitz constant, we can pass the limit through; that is

limEU
(
θ+
k (θk, θk) , βk|H

)
= limEU (1, βk|H) = V̄ . Hence,

limβk (θk)

= v − lim δkEU
(
θ+
k (θk, θk) , βk|θ0

k (θk, θk)
)

= v − lim θ0
k (θk, θk)︸ ︷︷ ︸
→1

EU
(
θ+
k (θk, θk) , βk|H

)︸ ︷︷ ︸
→V̄

−
(
1− θ0

k (θk, θk)
)︸ ︷︷ ︸

→0

EU
(
θ+
k (θk, θk) , βk|L

)
= v − V̄ = b′.

Thus, lim qHk (θ, p) = 0 for all p < v − V̄ , θ ∈ [θ, θ]: If not, then lim inf qHk
(
θ′, p′

)
> 0

for some p′ < v − V̄ and θ′. As we have shown before, lim inf qHk
(
θ′, p′

)
> 0 implies

p′ = v − V̄ , a contradiction.

From βk (θ) ≤ βk (1) = v − δVk (1) for all θ and k, it follows that lim qHk (θ, p) = 1

for all p > v − V̄ , θ ∈ [θ, θ]. Hence,

lim
k→∞

Ek [p, θ|H] = lim
1

qwk (θ)

∫ 1

0
(1− qwk (θ, b)) db = v − V̄ . QED .

Proof of Proposition 2.
We have shown that the trading probabilities become competitive in Lemma 10. We

now show that prices become competitive, too.

Case 1: dL < dH < 1. By Lemma 1, in both states, the probability of being the sole

bidder becomes one, e−D
w
k /S

w
k → 1, which implies Vk (θ) → v for all θ by inspection of

the payoffs. In particular, Vk (1) → v. Hence, the bidding strategy βk (θ) → 0 for all θ.

Because the expected price is smaller than βk (1) by definition and the monotonicity of

βk and because βk (1)→ 0, lim
k→∞

pwk (θ) = lim
k→∞

pwk (S) = 0 follows.

Case 2: dL > 1 and dH > 1. We show EUk [βk, θ = 0|L] → 0. By monotonicity of

the bidding strategy, βk (0) ≤ βk (θ) for all θ; hence, a buyer with belief θ = 0 wins only
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as the sole bidder,

EUk [βk, θ = 0|L] = e−D
L
k /S

L
k (v) + δk

(
1− e−DLk /SLk

)
EUk [βk, θ = 0|L]

⇔ EUk [βk, θ = 0|L] =
e−D

L
k /S

L
k

1−δk
e
−DL

k
/SL
k

+ δk
v.

From Lemma 1, 1−δk
e
−DL

k
/SL
k
→∞, while e−DLk /SLk → 0. Therefore,

lim
k→∞

EUk [βk, θ = 0|L] = 0.

Since EUk [βk, θ = 0|L] = Vk (0) and Vk (0)→ 0, we have limβk (θ) = v for all θ. Because

a bidder is never a sole bidder in the limit, lim
k→∞

pwk (θ) = lim
k→∞

pwk (S) = v follows.

Case 3: dH > 1 and dL < 1.

As in Case 1, by Lemma 1, lim
k→∞

pLk (θ) = lim
k→∞

pLk (S) = 0. We now argue w = H.

From before, θ1
k (θ)→ 1. Since, in the high state, the first cohort has a vanishing winning

probability, and since there is no exogenous exit in the limit either, it follows that

lim
k→∞

V H
k (θ) = lim

k→∞
V H
k (θ1

k (θ)) = V̄ .

From Lemma 9, qHk (θ)→ 1/dH . From Lemma 11 pHk (θ) = v − V̄ . Together,

lim
k→∞

V H
k (θ) =

v − (v − V̄ )

dH
=

V̄

dH
.

Since dH > 1, V̄ = V̄
dH

implies that V̄ = 0. Thus, the expected price lim
k→∞

pHk (θ) =

lim
k→∞

pHk (S) = v − V̄ = v. QED.

8.5 Proof of Proposition 3: Time Pattern of Bids

Proof. Step 1: We derive some auxiliary observations. By definition, θtk (θ) satisfies

θtk (θ)

1− θtk (θ)
=

θt−1
k (θ)

1− θt−1
k (θ)

1− ΓH(1),k(θ
t−1
k (θ))

1− ΓL(1),k(θ
t−1
k (θ))

.

The belief θtk (θ) is strictly increasing in t. From the proof of Proposition 2, lim
k→∞

ΓH(1),k(θ) =

lim
k→∞

1 − ΓL(1),k(θ) = 0 for all θ ∈ [θ, θ]. Therefore, lim
k→∞

θ1
k (θ) = 1; thus, by monotonic-

ity, lim
k→∞

θtk (θ) = 1. The posterior after losing t times and then being tied satisfies (if
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densities are positive)

θ0
k

(
θtk (θ) , θtk (θ)

)
1− θ0

k

(
θtk (θ) , θtk (θ)

) =
θtk (θ)

1− θtk (θ)

γH(1),k(θ
t
k (θ))

γL(1),k(θ
t
k (θ))

. (36)

By definition, γw(1),k = µwk γ
w
k Γw(1),k. Using the no-introspection condition to substitute

for γwk ,
γH(1),k(θ)

γL(1),k(θ)
=

θ

1− θ
SLk
SHk

ΓH(1),k(θ)

ΓL(1),k(θ)
. (37)

Substituting iteratively into (36),

θ0
k

(
θtk (θ) , θtk (θ)

)
1− θ0

k

(
θtk (θ) , θtk (θ)

) =
θt−1
k

1− θt−1
k

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

θtk
1− θtk

SLk
SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)

=

= (
θt−1
k

1− θt−1
k

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

)2 S
L
k

SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)

=

= (
θt−2
k

1− θt−2
k

1− ΓH(1),k(θ
t−2
k )

1− ΓL(1),k(θ
t−2
k )

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

)2 S
L
k

SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)

= (
θ

1− θ
1− ΓH(1),k(θ)

1− ΓL(1),k(θ)
· · ·

1− ΓH(1),k(θ
t−1
k )

1− ΓL(1),k(θ
t−1
k )

)2 S
L
k

SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)
.(38)

Recall from the proof of Proposition 2 that

lim
k→∞

µLk = 0 and lim
k→∞

µLk
1− δk

=
dL

1− dL . (39)

L’Hospital’s rule implies that limx→0
1−e−x
x = 1. Hence,

lim
k→∞

1− e−µLk
1− δk

=
dL

1− dL . (40)

Step 2: Proof of Statement (i) of Proposition 3.
From the previous step, lim θ1

k (θ) > θ for all θ ∈ [θ, θ]. Thus, monotonicity of beliefs

implies that for suffi ciently large k,

θ0
k

(
θtk(θ), θ

t
k(θ)

)
≥ θ0

k

(
θt−1
k (θ), θt−1

k (θ)
)

for all θ ∈ [θ, θ].29 Therefore, it is suffi cient to prove statement (i) at θ = θ. In the

29The tying posterior θ0k is defined at θ by definition of γ
w
k and g

w
k (θ) > 0, which ensure γw(1)

(
θtk (θ)

)
> 0

for all t.
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following, we simplify

θtk ≡ θtk (θ) .

For suffi ciently large k such that θ1
k > θ, the steady-state conditions imply

Dw
k Γwk (θtk) = dw+

∫ θ̄

θ
δkξ

w
k (τ) dGw (τ)+...+

∫ θ̄

θ
δt−1
k ξwk (τ) ...ξwk

(
θt−1
k (τ)

)
dGw (τ) ≤ tdw.

From the proof of Proposition 2, DH
k →∞. Hence,

lim
k→∞

ΓH(1),k(θ
t
k)

e−µ
H
k

= lim
k→∞

e
−µHk

(
1− td

H

DH
k

)

e−µ
H
k

= 1. (41)

Moreover, the steady-state conditions imply that

Dw
k

(
1− Γwk (θtk)

)
≤
dL
(

1− e−µLk
)t

1− δk + e−µ
L
k

(42)

because ξwk (θ) ≤ ξwk (θ) = 1− e−µLk for all θ ≥ θ and

Dw
k

(
1− Γwk (θtk)

)
=

∫ θ̄

θ
δtkξ

w
k (τ) ...ξwk

(
θtk (τ)

)
dGw (τ)

+

∫ θ̄

θ
δt+1
k ξwk (τ) ...ξwk

(
θt+1
k (τ)

)
dGw (τ) + ....

≤ δtk

(
1− e−µLk

)t
dL + δt+1

k

(
1− e−µLk

)t+1
dL + ....

=
1

1− δk + e−µ
L
k

δtk

(
1− e−µLk

)t
dL.

From (40) and (41),

lim
k→∞

1− ΓL(1),k(θ)

1− δk
= lim

k→∞

1− e−µLk
1− δk

=
dL

1− dL .

Hence, (42) implies

lim
k→∞

sup
DL
k

(
1− ΓLk (θtk)

)
(1− δk)t

≤ dL
(

dL

1− dL

)t
.

This implies

lim
k→∞

sup
1− ΓL(1),k(θ

t
k)

(1− δk)t+1 = lim
k→∞

sup
1− e−µLk (1−ΓLk (θtk))

(1− δk)t+1 ≤
(

dL

1− dL

)t+1

, (43)

36



since,

lim
k→∞

sup
µLk
(
1− ΓLk (θtk)

)
(1− δk)t+1 ≤ lim

k→∞
sup

1

(1− δk)SLk

(
DL
k

(
1− ΓLk (θtk)

)
(1− δk)t

)
=

dL

1− dL

(
dL

1− dL

)t
.

Note that (23), (26), and (41) imply

limSLk ΓH(1),k(θ
t
k) = lim

1− dL
1− δk

e
− 1−dH

1−δk . (44)

Taking limits on (38) and ignoring all terms that are finite and non-zero,

lim
k→∞

θ0
k

(
θtk
(
θ̄
)
, θtk
(
θ̄
))

1− θ0
k

(
θtk
(
θ̄
)
, θtk
(
θ̄
))

= lim
k→∞

(
1

1− ΓL(1),k(θ)
...

1

1− ΓL(1),k(θ
t−2
k )

1

1− ΓL(1),k(θ
t−1
k )

)2SLk ΓH(1),k(θ
t
k)

= lim
k→∞

1
1−δk e

−(1−dH)/(1−δk)

(1− δk)(1− δk)2...(1− δk)t
= 0,

where we used (44) and (43) for the second and l’Hospital’s rule for the final equality.

From the proof of Proposition 2, limEU (θ, βk|0) = v for all θ. Because the sequence

of payoffs EU
(
θ, βk|θ′

)
is Lipschitz continuous in θ′ with a uniform Lipschitz constant,

we can pass the limit through:

lim
k→∞

βk(θ
t
k) = v − lim

k→∞
δkEU

(
θ+
k

(
θtk, θ

t
k

)
, βk|θ0

k

(
θtk, θ

t
k

))
= v − lim

k→∞
EU (1, βk|0) = 0.

This concludes the proof of statement (i).

Step 3: Proof of Statement (ii) of Proposition 3.
Let tk ≡ −(0.5)

(1−δ) ln(1−δ) . Note that Lemma 3 implies that the likelihood ratio of losing,
1−ΓH

(1),k
(θ)

1−ΓL
(1),k

(θ)
, is a nondecreasing function of θ on the support of Γw(1),k. Therefore, (38)

implies for θ ∈
[
θ, θ̄
]
:

θ0
k

(
θtk (θ) , θtk (θ)

)
1− θ0

k

(
θtk (θ) , θtk (θ)

) ≥ ( θ

1− θ

)2
(

1− ΓH(1),k(θ)

1− ΓL(1),k(θ)

)2tk
SLk
SHk

ΓH(1),k(θ
t
k)

ΓL(1),k(θ
t
k)
.
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Evaluating the limit of terms on the right-hand side:

lim
k→∞

inf

(
1− ΓH(1),k(θ)

1− ΓL(1),k(θ)

)2tk

SLk ΓH(1),k(θ
t
k)

= lim
k→∞

inf

(
1

1− ΓL(1),k(θ)

)2tk
1− dL
1− δk

e
− 1−dH

1−δk

= lim
k→∞

inf

(
dL

1− dL (1− δk)
)−2tk 1− dL

1− δk
e
− 1−dH

1−δk =∞,

where we used ΓH(1),k(θ) → 0 and (44) for the second line, (40) for the first equality of

the third line, and the following observation for the second equality of the third line:

lim
(1−δ)→0

1−dL
1−δ e

− 1−dH
1−δ(

dL
1−dL (1− δ)

)− 1
(1−δ) ln(1−δ)

= lim
(1−δ)→0

1− dL
1− δ

(
(

dL
1− dL

)
1

ln(1−δ)
e1−dH

e

) −1
1−δ

=∞.

This follows from lim( dL
1−dL )

1
ln(1−δ) = 1 and lim( dL

1−dL )
1

ln(1−δ) e
1−dH
e = e−dH < 1, so that

lim
(1−δ)→0

(
( dL

1−dL )
1

ln(1−δ) e
1−dH
e

) −1
1−δ

=∞.

Thus, lim
k→∞

θ0
k

(
θtk (θ) , θtk (θ)

)
= 1, as claimed. From the proof of Proposition 2,

limEU (1, βk|1) = 0. Together,

lim
k→∞

βk(θ
tk
k ) = v − lim

k→∞
δkEU

(
θ+
k

(
θtkk , θ

tk
k

)
, βk|θ0

k

(
θtkk , θ

tk
k

))
= v − lim

k→∞
δkEU (1, βk|1) = v. QED.
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