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Abstract

Do mandatory spending programs such as Social Security and Medicare improve

efficiency? To address this question, We analyze a model with two parties allocating a

fixed budget to a public good and private transfers each period over an infinite horizon.

We compare two institutions: one in which the public good spending is discretionary and

the other in which it is mandatory. We model mandatory spending as an endogenous

status quo since it is enacted by law and remains in effect until changed. Mandatory

programs always result in higher public good spending. Over-provision of the public

good can arise as a transient state when parties are highly polarized, but in steady

states, the level of public good spending is either below or equal to the efficient level, and

is always closer to the efficient level than when public good spending is discretionary.

The party that places a higher value on the public good benefits from mandatory

programs; more surprisingly, the party that places a lower value on the public good

also benefits from mandatory programs, provided that parties are patient, persistence

of power is low, and polarization is low. Under these conditions, mandatory programs

ex ante Pareto dominate discretionary programs.
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1 Introduction

Government budgets are primarily decided through negotiations. Institutions governing bud-

get negotiations play an important role in fiscal policy outcomes. These institutions vary

across countries and time, and examining their effects is an important step towards un-

derstanding these variations.1 In this paper, we are interested in the role of a particular

institution: mandatory spending programs.

Mandatory spending is expenditure that is governed by formulas or criteria set forth in

enacted law, rather than by periodic appropriations. As such, unless explicitly changed, the

previous year’s spending bill applies to the current year. By contrast, discretionary spend-

ing is expenditure that is governed by annual or other periodic appropriations. Examples

of mandatory spending in the U.S. include entitlement programs such as Social Security

and Medicare, while discretionary spending consists of mostly military spending. As Figure

1 shows, mandatory spending has been growing as a share of GDP in the U.S.. In 2011,

mandatory spending was $2 trillion compared to discretionary spending of $1.3 trillion. Be-

cause of these trends, mandatory spending has been at the heart of recent budget negotiations

and is consistently ranked as a top issue by the public and policymakers.2

Figure 1: US mandatory versus discretionary spending as % of GDP, 1962-2010

We take a first step towards understanding the effects of mandatory spending programs

on budget negotiations and their implications for the efficient provision of public goods.3 In

1See International Budget Practices and Procedures Database of the OECD, which is available at
www.oecd.org/gov/budget/database.

2See http://www.people-press.org/2012/06/14/debt-and-deficit-a-public-opinion-dilemma/.
3The definition of a public good requires that it is non-excludable and non-rivalrous. However, our model

only requires that the good be non-excludable, and as such, is also applicable to a common pool resource.
Entitlement programs such as Social Security and Medicare are often thought of as a common pool resource.
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our model, two parties decide how to allocate an exogenously given budget each period over

an infinite horizon. The parties must determine the allocation to spending on a public good

and private transfers for each party. Parties potentially differ in the value they attach to

the public good and we refer to the degree of such differences as the level of polarization

between the parties. Each period a party is randomly selected to make a budget proposal.

The probability that the last period’s proposer is selected to be the proposer in the current

period captures the persistence of political power. The proposer makes a take-it-or-leave-it

budget offer. If the other party accepts the offer, it is implemented; otherwise, the status

quo prevails. We compare two institutions that govern the status quo: a political system

in which public good spending is discretionary, in which case the status quo public good

allocation is normalized to zero each period; and a political system in which public good

spending is mandatory, in which case the status quo public good allocation in any period

is given by what was implemented in the previous period, and hence is endogenous. Under

both institutions, we assume that the status quo allocation to private transfers is zero.

Under discretionary public spending, in the unique Markov perfect equilibrium, the party

in power under-provides the public good and extracts the maximum private transfer for

itself. Under mandatory public spending, the degree of polarization plays an important role

in determining equilibrium allocations. We characterize Markov perfect equilibria first when

polarization is low and second when polarization is high.

In the low-polarization case, the levels of public good spending proposed by both parties

are either below or equal to the efficient level in both transient and steady states, and

are always closer to the efficient level than when public good spending is discretionary. To

understand why, note that mandatory programs create a channel to provide insurance against

power fluctuations because they raise the bargaining power of the non-proposing party by

raising its status quo payoff. When the status quo level of the public good is low, the party

that places a higher value on the public good exploits this insurance effect by proposing a level

of public good spending higher than what it would propose without mandatory programs.

The incumbent receives all the private transfers when the status quo level of public good

spending is below the efficient level, but when the status quo is higher than the efficient

level, the incumbent proposes to lower the public good spending to the efficient level, and

gives some private transfer to the opposition party so as to pass the budget proposal.

In the high-polarization case, the insurance effect from mandatory programs can lead

the party placing a high value on the public good to propose a level of public good spending

above the efficient level, creating temporary “over-provision.” This is only temporary because

of power fluctuations – once the party who places a lower value on the public good comes

into power, it will lower the level of public good to the efficient level. Indeed, the unique

steady state in the high-polarization case involves the efficient level of public good spending

and private transfers only to the incumbent party.

As is typical in dynamic games, we cannot appeal to general theorems on uniqueness of
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Markov perfect equilibrium under mandatory public spending; however, we show that under

some conditions, there are no steady states other than the ones in the equilibria we charac-

terize, allowing us to conduct comparative statics analysis and make welfare comparisons.

One interesting result is that greater power fluctuations (lower persistence of power) lead

to greater efficiency with mandatory programs. This is because greater power fluctuations

provides stronger insurance incentives leading to a higher level of the public good in the steady

state. This is in contrast to Besley and Coate (1998), who show that power fluctuations

undermine incentives to invest in the public good and lead to less efficient outcomes.

Perhaps it is not surprising that the party placing a higher value on the public good

benefits from the introduction of mandatory programs. But strikingly, we show that the

party placing a lower value on the public good also benefits from mandatory programs,

provided that the parties are patient, the persistence of power is low, and polarization is low.

Intuitively, if the party with a lower value cares sufficiently about future payoffs, expects

power to fluctuate frequently, and places a relatively high value on the public good, then the

insurance benefit from mandatory programs is high, making the lower-value party better off.

Thus, mandatory programs can be Pareto improving, and this may explain why they are

successfully enacted in the first place.

Related literature

The distinction between private goods and public goods goes back to at least Adam

Smith (1776), who concluded that public goods must be provided by the government since

the market fails to do so. By now there exists a vast literature formally studying public

goods, starting with the classic work by Wicksell (1896) and Lindahl (1919).

Our paper adds to the literature on public goods provision with political economy frictions

as surveyed in Persson and Tabellini (2000). A subset of this literature analyzes public good

provision under alternative political institutions. For example, Lizzeri and Persico (2001)

investigate the role of alternative electoral systems in the provision of public goods. Our

paper focuses on a particular institution, namely mandatory spending programs.

We consider the determination of public good provision in a legislative bargaining frame-

work, similar to Baron (1996), Leblanc, Snyder, Tripathi (2000), Volden and Wiseman (2007),

and Battaglini and Coate (2007, 2008). With the exception of Baron (1996), these papers

do not consider mandatory programs. Baron (1996) presents a dynamic theory of bargaining

over public goods programs in a majority-rule legislature where the status quo in a session

is given by the program last enacted. He models the provision of public good as a unidi-

mensional policy choice, and analyzes the equilibrium outcome under mandatory programs

only. Our paper contributes to this literature by incorporating both mandatory programs

and discretionary programs and exploring their efficiency implications.

Building on the seminal papers of Rubinstein (1982) and Baron and Ferejohn (1989), most

papers on political bargaining study environments where the game ends once an agreement
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is reached. Starting with the works of Epple and Riordan (1987) and Baron (1996), there is

now an active literature on bargaining with an endogenous status quo. These include Baron

and Heron (2003), Kalandrakis (2004), Bernheim, Rangel and Rayo (2006), Anesi (2010),

Diermeier and Fong (2011), Anesi and Seidmann (2012), Bowen and Zahran (2012), Duggan

and Kalandrakis (2012), Dziuda and Loeper (2012), Nunnari (2012), and Piguillem and Ri-

boni (2012). Unlike our paper, these papers consider bargaining over either a unidimensional

policy or the division of private benefits. Thus, they do not address how mandatory programs

affect the provision of public goods, which is the question at the heart of our paper.

Our work is also related to the literature on power fluctuations, which includes Persson

and Svensson (1989), Alesina and Tabellini (1990), Besley and Coate (1998), Grossman and

Helpman (1998), Hassler, Storesletten and Zilibotti (2007), Klein, Krusell, Ŕıos-Rull (2008),

Azzimonti (2011), and Song, Storesletten and Zilibotti (2012). These papers show that power

fluctuations can lead to political failures. By considering equilibria that are non-Markov,

Dixit, Grossman and Gül (2000) and Acemoglu, Golosov, Tsyvinski (2010) establish the

possibility of political compromise for the purpose of risk sharing under power fluctuations.

In our paper, by contrast, even if parties use Markov strategies, they can reach a certain

degree of compromise because with mandatory programs, the party in power cannot fully

undo the decisions and allocations of the past. Moreover, we discuss political compromise in

the context of public good provision, which has efficiency implications beyond risk sharing.

Mandatory programs generate a dynamic link between policy in a given period and po-

litical power in future periods. In that sense, our paper is also related to Bai and Lagunoff

(2011), who analyze policy endogenous power.

The rest of the paper is organized as follows. In the next section we describe our model.

In Section 3 we consider the social planner’s problem. In Section 4 we give the definition

of Markov perfect equilibrium for our model. We analyze the case of discretionary public

spending in Section 5 and the case of mandatory public spending in Section 6. We discuss

equilibrium dynamics in Section 7 and efficiency implications of mandatory programs in

Section 8. In Section 9, we conclude and discuss some promising extensions.

2 Model

Consider a stylized economy and political system with two parties labeled H and L. Time

is infinite and indexed by t = 0, 1 . . .. Each period the two parties decide how to allocate an

exogenously given dollar. The budget consists of an allocation to spending on a public good,

gt, and private transfers for each party, xtH and xtL. Denote by bt = (gt, xtH , x
t
L) the budget

implemented at time t. Let B = {y ∈ R3
+ :
∑3

i=1 yi ≤ 1}. Feasibility requires that bt ∈ B.

The stage utility for party i from the budget bt is

ui(b
t) = xti + θi ln(gt),
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where θi captures the relative value of the public good for party i ∈ {H,L} of public goods.4,5

We assume θH ≥ θL ≥ 0 and θH + θL < 1, which ensures that the efficient level of public

good spending is lower than the size of the budget, as we show later.

The parties have a common discount factor δ. Party i seeks to maximize its discounted

dynamic payoff from a infinite sequence of budgets,
∑∞

t=0 δ
tui(b

t).

Political system

We consider a political system with unanimity rule. Each period a party is randomly

selected to make a proposal for the allocation of the dollar. The probability of being proposer

is Markovian. Specifically, p is the probability that party i is the proposer in period t+ 1 if

it was the proposer in period t, which we interpret as the persistence of political power.

At the beginning of period t, the identity of proposing party is realized. The proposing

party makes a proposal for the budget, denoted by zt. If the responding party agrees to the

proposal, it becomes the implemented budget for the period, so bt = zt; otherwise, bt = st,

where st is the status quo budget.

Let S ⊆ B be the set of feasible status quo budgets, and let ζ : B → S be an exogenous

function that determines the status quo in period t+ 1 as a function of the budget in period

t. So st+1 = ζ(bt) for all t. The set S and the function ζ are determined by the rules

governing mandatory and discretionary programs. For example, if no mandatory programs

are allowed, then S = {(0, 0, 0)} and ζ(b) = (0, 0, 0) for all b ∈ B. That is, in the event

that the responding party rejects the proposal, no spending on either public good or private

transfers will occur that period. At the other extreme where all spending is in the form of

mandatory programs, S = B and the status quo is ζ(b) = b. That is, disagreement on a new

budget implies the last period’s budget is implemented.

We compare two institutions: one in which all spending is discretionary (that is, ζ(b) =

(0, 0, 0)), and the other in which spending on the public good is mandatory, but private

transfers are discretionary (that is, ζ(b) = (g, 0, 0) for any b = (g, xH , xL)). We find it

reasonable to think of the U.S. federal budget as allocating private transfers through discre-

tionary spending and public goods through mandatory programs. This is because private

transfers in the form of earmarks designated for particular districts are typically appropriated

annually, whereas social programs such as Social Security and Medicare are funded through

mandatory programs and provide benefits from which constituents of any particular party

cannot be excluded. As mentioned in the introduction, although Social Security and Medi-

care do not satisfy the “non-rivalrous” criterion, they satisfy the“non-excludable” criterion

4Our results would go through if instead we assumed ui(b
t) = xti + θi ln(αig

t) for some constant αi > 0.
We can think of αi as the fraction of the common pool resource party i extracts in a second stage game after
the total allocation to the public good is agreed upon. In that sense, our results apply to settings where gt

is non-excludable but not necessarily non-rivalrous.
5We assume log utility for tractability. This functional form is commonly used, for example, in Azzimonti

(2011) and in Song et al. (2012). In the numerical analysis we conducted using CRRA utility functions, we
obtained qualitatively same results.
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and are therefore often thought of as a common pool resource. Our model applies when g is

a common pool resource; for expositional convenience, we refer to g as a “public good.”

3 Social planner’s problem: Pareto efficient allocations

As a benchmark, consider the Pareto efficient allocations. These solve

max
{bt}∞t=0

∞∑
t=0

δtuL(bt)

s.t.
∞∑
t=0

δtuH(bt) ≥ U and bt ∈ B for all t.

We find that any Pareto efficient allocation with xt
′
L > 0 and xt

′′
H > 0 for some t′ and t′′ must

have gt = θH + θL for all t.6 (Note that gt = θH + θL also uniquely satisfies the Samuelson

condition for efficient provision of public goods.) We henceforth refer to θH + θL as the

efficient level of the public good.

For contrast, consider party i’s ideal allocation in any period, which solves maxb∈B ui(b).

Let us call the level of public good that solves this problem the dictator level for party i.

Clearly party i would not choose to allocate any spending to party j, hence the dictator level

solves maxg 1− g+ θi ln(g). This is maximized at θi < θH + θL. So party i’s ideal level of the

public good in any period results in under-provision of the public good. In a political system

that is a dictatorship in every period, this is the level of public good allocated.7

4 Markov perfect equilibrium

We consider stationary Markov perfect equilibria.8 A Markov strategy depends only on

payoff-relevant events, and a stationary Markov strategy does not depend on calendar time.

In our model, the payoff-relevant state in any period is the status quo s. Thus, a (pure)

stationary Markov strategy for party i is a pair of functions σi = (πi, αi), where πi : S → B

is a proposal strategy of party i and αi : S×B → {0, 1} is an acceptance strategy of party i.

Party i’s proposal strategy πi = (γi, χiH , χ
i
L) associates with each status quo s an amount of

6A proof is available in a supplementary Appendix.
7If it is the same party who is the dictator in every period, then clearly in every period it chooses g = θi;

if different parties become the dictator in different periods, then whenever party i is the dictator, it still
chooses g = θi in any Markov perfect equilibrium, but it is possible to have g 6= θi in a non-Markovian
equilibrium, similar to Dixit et al. (2000) and Acemoglu et al. (2011).

8By focusing on stationary Markov perfect equilibria, we rule out punishment strategies that depend
on payoff irrelevant past events. This is a commonly used solution concept in political bargaining models.
See, for example, Battaglini and Coate (2008), Diermeier and Fong (2011), Dziuda and Loeper (2012). This
solution concept seems reasonable in the context of political bargaining where there is turnover within parties
since stationary Markov equilibria are simple and do not require coordination.
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public good spending, denoted by γi(s), an amount of private spending for party H, denoted

by χiH(s), and an amount of private spending for party L, denoted by χiL(s). Party i’s

acceptance strategy αi(s, z) takes the value 1 if party i accepts the proposal z offered by

party j 6= i when the status quo is s, and 0 otherwise. A stationary Markov equilibrium is a

subgame perfect Nash equilibrium in stationary Markov strategies. We henceforth refer to a

stationary Markov equilibrium simply as an equilibrium.

To each strategy profile σ = (σH , σL), and each party i, we can associate two functions

Vi(·;σ) and Wi(·;σ). The value Vi(s;σ) represents the dynamic payoff of party i if i is the

proposer in the current period and the value Wi(s;σ) represents the dynamic payoff of party

i if i is the responder in the current period, when the status quo is s and the strategy profile

σ will be played from the current period onwards.

We restrict attention to equilibria in which (i) αi(s, z) = 1 when party i is indifferent

between s and z; and (ii) αi(s, πj(s)) = 1 for all s ∈ S, i, j ∈ {H,L} with j 6= i. That is, the

responder accepts any proposal that it is indifferent between accepting and rejecting, and the

equilibrium proposals are always accepted.9 Given the restriction that equilibrium proposals

are always accepted, in these equilibria the implemented budget is the proposed budget.

Call a strategy profile σ and associated payoff quadruple (VH ,WH , VL,WL) a strategy-

payoff pair. In what follows, we suppress the dependence of the payoff quadruple on σ

for notational convenience. Given the restrictions that parties accept when indifferent and

equilibrium proposals are always accepted, a strategy-payoff pair is an equilibrium strategy-

payoff pair if and only if

(E1) Given (VH ,WH , VL,WL), for any proposal z = (g′, x′H , x
′
L) ∈ B and status quo s =

(g, xH , xL) ∈ S, the acceptance strategy αi(s, z) = 1 if and only if

x′i + θi ln(g′) + δ[(1− p)Vi(ζ(z)) + pWi(ζ(z))] ≥ Ki(s) (1)

where Ki(s) = xi + θi ln(g) + δ[(1− p)Vi(s) + pWi(s)] denotes the dynamic payoff of i

from the status quo s = (g, xH , xL).

9Any equilibrium is payoff equivalent to some equilibrium (possibly itself) that satisfies (i) and (ii). We
take two steps to show this: first, any equilibrium is payoff equivalent to some equilibrium that satisfies (i);
second, any equilibrium that satisfies (i) is payoff equivalent to some equilibrium that satisfies (i) and (ii).

To prove the first step, consider an equilibrium σE that does not satisfy (i). Then there exists a status quo
s′ and a proposal z′ = (g′, x′H , x

′
L) such that the responder i is indifferent between s′ and z′ but αi(s′, z′) = 0.

If z′ gives the proposer j a lower payoff than πj(s′), then σE is payoff equivalent to the equilibrium which is
the same as σE except that αi(s′, z′) = 1 because j would not propose z′ when the status quo is s′. If z′ gives
the proposer a strictly higher payoff than πj(s′), then there exists a proposal z′′ that gives the responder a
higher payoff than z′ does and gives the proposer a strictly higher payoff than πj(s′). That is, z′′ is a strictly
better proposal than πj(s′), contradicting that σE is an equilibrium.

To prove the second step, consider an equilibrium σE that satisfies (i) but not (ii). Then there exists
a status quo s′ such that αi(s′, πj(s′)) = 0, implying that the proposer receives the status quo payoff by
proposing πj(s′) when the status quo is s′. By condition (i), the status quo is a proposal that is accepted. It
follows that σE is payoff equivalent to the equilibrium which is the same as σE except that πj(s′) = s′.
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(E2) Given (VH ,WH , VL,WL) and αj, for any status quo s = (g, xH , xL) ∈ S, the proposal

strategy πi(s) of party i 6= j satisfies:

πi(s) ∈ arg max
z=(g′,x′H ,x

′
L)∈B

x′i + θi ln(g′) + δ[pVi(ζ(z)) + (1− p)Wi(ζ(z))] (2)

s.t. x′j + θj ln(g′) + δ[(1− p)Vj(ζ(z)) + pWj(ζ(z))] ≥ Kj(s). (3)

(E3) Given σ = ((πH , αH), (πL, αL)), the payoff quadruple (VH ,WH , VL,WL) satisfies the

following functional equations for any s = (g, xH , xL) ∈ S, i, j ∈ {H,L} with j 6= i:

Vi(s) = χii(s) + θi ln(γi(s)) + δ[pVi(ζ(πi(s))) + (1− p)Wi(ζ(πi(s)))], (4)

Wi(s) = χji (s) + θi ln(γj(s)) + δ[(1− p)Vi(ζ(πj(s))) + pWi(ζ(πj(s)))]. (5)

We establish existence of equilibria by construction. We begin by considering the bench-

mark model of all discretionary, and then consider the model in which spending on the public

good is mandatory and private transfers are discretionary.

5 Discretionary public spending

Suppose all spending is discretionary, implying that the status quo level of public good

spending as well as private transfers is zero. That is, ζ(b) = (0, 0, 0) for any b ∈ B. Because

of log utility in the public good, the responder’s status payoff Ki(s) is −∞ for any status quo

s, and hence the responder’s acceptance constraint is not binding. The proposer therefore

sets the public good at the dictator level θi every period and there is under-provision of the

public good. This leads to the first proposition.10

Proposition 1. If all spending is discretionary, then the public good is provided at the dic-

tator level, and there is under-provision of the public good in equilibrium.

One implication of Proposition 1 is that with only discretionary spending, the equilibrium

allocation to the public good follows a Markov process. Specifically, if i is the proposer in

the current period, spending on the public good next period is θi with probability p (if i

is the proposer in the next period), and θj with probability 1 − p (if j is the proposer in

the next period). In Section 7, we compare this long-run behavior of spending on the public

good under discretionary programs to the long-run behavior under mandatory programs, and

assess the efficiency implications in Section 8.

10Because of log utility in g, Proposition 1 holds for arbitrary status quo rules for private transfers, as
long as public spending is discretionary.
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6 Mandatory public spending

In this section, we consider the case in which only the public good spending is mandatory,

that is, ζ(b) = (g, 0, 0) for any b = (g, xH , xL) ∈ B. In the rest of this section, to lighten

notation, we suppress the dependence of πi and αi on the components of the status quo other

than g, and write πi(g) and αi(g, z) instead of πi(s) and αi(s, z). We also refer to the status

quo public good level as the status quo. To obtain some intuition for the equilibrium under

mandatory public spending and discretionary private spending, we first analyze a one-period

model with an exogenous status quo and then analyze the infinite horizon game.

6.1 A one-period model

Suppose that party i is the proposer and seeks to maximize its utility ui(z) = x′i + θi ln(g′) in

one period, given an exogenous status quo g and unanimity rule. Party i’s one-shot problem

that is analogous to (E2) is

πi(g) ∈ arg max
z=(g′,x′H ,x

′
L)∈B

x′i + θi ln(g′)

s.t. x′j + θj ln(g′) ≥ Kj(g),

where Kj(g) = θj ln(g).

Proposition 2. In the one-period model with mandatory public spending and discretionary

private spending, the proposal strategy for party i ∈ {H,L} is

γi(g) =


θi for g ≤ θi,

g for θi ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g ≤ 1,

χij(g) =

{
0 for g ≤ θH + θL,

θj[ln(g)− ln(θH + θL)] for θH + θL ≤ g ≤ 1,

and χii(g) = 1− γi(g)− χij(g).

We relegate the proof of Proposition 2 to the Appendix. Henceforth all omitted proofs

are in the Appendix. We illustrate γi(g) in Figure 2 for the one-period problem.

Notice that when the status quo level of the public good is below proposer i’s static ideal

θi, proposer i has a constant choice of γi(g) equal to its static ideal. Intuitively, when the

status quo is below some threshold, the responder’s acceptance constraint does not bind, and

hence the proposer is able to set its ideal level of the public good and extract the remainder

of the budget as a transfer for itself. When the status quo is above this threshold, the

responder’s acceptance constraint binds. For some intermediate range of the status quo,

it is optimal for the proposer to maintain the level of the public good at the status quo

10
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Figure 2: γi(g) in one-period problem

and extracts the remaining budget as a transfer. For status quos above the efficient level

θH +θL, since the sum of the marginal benefit of the public good is lower than the sum of the

marginal benefit of transfers, the proposer does best by lowering the level of the public good

to the efficient level, giving the responder a transfer to make the responder indifferent, and

extracting the remainder of the budget for itself. Hence γi(g) is constant at the efficient level

when the status quo is above the efficient level. These strategies give the following payoffs

to the proposer i and responder j respectively in the one-period model.

Vi(g) =


1− θi + θi ln(θi) if g ≤ θi,

1− g + θi ln(g) if θi ≤ g ≤ θH + θL,

1− θH − θL − θj ln(g) + (θH + θL) ln(θH + θL) if θH + θL ≤ g,

and

Wj(g) =

{
θj ln(θi) if g ≤ θi,

θj ln(g) if θi ≤ g.

As shown above, the proposer’s equilibrium payoff Vi(g) is constant and maximized when

the status quo is below its static ideal. This is where the responder’s constraint is not binding

and the proposer obtains the highest payoff possible. The proposer’s payoff is decreasing for

status quos higher than its ideal because now the responder’s constraint is binding, and the

responder’s status quo payoff is increasing in the status quo. Similarly, the responder’s payoff

Wj(g) is constant for status quos below the proposer’s ideal and increasing for status quos

above the proposer’s ideal, where it is equal to the status quo payoff.

Given the equilibrium payoffs in the one-period problem take different functional forms

for different regions, the analysis of the T -period problem, even for T = 2, is cumbersome.

Partly because of this, we do not analyze a T -period problem. Rather, we analyze the
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infinite-horizon problem by exploiting the recursive structure.

6.2 The infinite-horizon model

Now consider the infinite-horizon model. From the equilibrium conditions (E2), it must be

the case that, for all i, j ∈ {H,L}, j 6= i and any status quo g, the proposal πi(g) is a solution

to the following maximization problem,

πi(g) ∈ arg max
z=(g′,x′H ,x

′
L)∈B

x′i + θi ln(g′) + δ[pVi(g
′) + (1− p)Wi(g

′)] (6)

s.t. x′j + θj ln(g′) + δ[(1− p)Vj(g′) + pWj(g
′)] ≥ Kj(g), (7)

where

Kj(g) = θj ln(g) + δ[(1− p)Vj(g) + pWj(g)]. (8)

From (E3), Vi and Wi satisfy the following functional equations:

Vi(g) = χii(g) + θi ln(γi(g)) + δ[pVi(γ
i(g)) + (1− p)Wi(γ

i(g))], (9)

Wi(g) = χji (g) + θi ln(γj(g)) + δ[(1− p)Vi(γj(g)) + pWi(γ
j(g))]. (10)

We construct equilibria by the “guess and verify” method. The form of the parties’

equilibrium strategies and payoffs in the one-period model are a natural starting place to

consider the solution to the infinite-horizon model; however, we expect the solution to the

infinite-horizon model to take into account continuation strategies and payoffs. We provide

here some brief intuition about how this may alter strategies. Consider the choice of the pro-

poser when the responder’s constraint is not binding. In the one-period model, the proposer

chooses its static ideal. In the infinite-horizon model the proposer takes into account the fact

that it may not be the proposer in the next period; hence he may wish to provide insurance

for itself by setting the value of the public good above its static ideal. We find this insurance

effect to be present in the infinite-horizon model.

This insurance effect appears to have the desirable property that it increases the equilib-

rium level of the public good compared to discretionary spending, but is it possible that it

causes parties to increase the level of the public good above the efficient level? The answer

is yes for some parameter values. In particular, define the level of polarization as the ratio
θH
θL

. Below we divide the characterization of the equilibrium of the infinite-horizon model

into the low-polarization case and the high-polarization case. In the case of low polarization

we show that the insurance effect leads party H to propose levels of public good spending

that are higher than what it proposes when such spending is discretionary, but there is no

over-provision of the public good in equilibrium. In the high-polarization case we do ob-

serve over-provision of the public good. We make these statements precise in the equilibrium

characterization below.

To simplify the characterization, we use the recursive structure of the dynamic payoffs to

establish Lemma 1, which shows that when the responder’s acceptance constraint (7) binds,
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the responder’s dynamic payoff Wi(g) and its status quo payoff Ki(g) can be expressed

entirely in terms of Vi(g), its dynamic payoff if it was the proposer.

Lemma 1. If Wi(g) = Ki(g), then

Wi(g) = Ki(g) =
1

1− δp
[θi ln(g) + δ(1− p)Vi(g)]. (11)

Proof: Suppose Wi(g) = Ki(g). Then Wi(g) = θi ln(g) + δ[(1 − p)Vi(g) + pWi(g)].

Rearranging gives (11).

Lemma 1 conveniently transforms the dynamic payoff for party i into one with a single

value function Vi(g), rather than two - Vi(g) and Wi(g) - when party i’s constraint is binding.

For the upcoming analysis, it is useful to define fi as party i’s dynamic payoff when the

public spending in the current period is g and party i receives the remaining surplus:

fi(g) =1− g + θi ln(g) + δ[pVi(g) + (1− p)Wi(g)]. (12)

Low-polarization case

We look for an equilibrium strategy-payoff pair σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL)

with the following properties that bear some resemblance to the one-period solution:

(G1) There exist g∗L and g∗H with g∗L < g∗H < θH + θL such that g∗i ∈ arg max fi(g) for

i ∈ {H,L} and if g ≤ g∗i , then πi(g) = πi(g∗i ), and specifically γi(g) = g∗i .

(G2) If g ∈ [g∗i , θH + θL], then γi(g) = g and Wj(g) = Kj(g) for i, j ∈ {H,L} with i 6= j.

(G3) For any i, j ∈ {H,L} with j 6= i, if g ≥ θH + θL, then γi(g) = θH + θL, Wj(g) = Kj(g),

and the proposer’s equilibrium payoff Vi(g) takes the form Vi(g) = Ci ln(g) +Di.

Guess (G1) says that when the status quo is sufficiently low, each proposer proposes a

constant level of public good spending that maximizes its dynamic payoff, with the public

good spending proposed by L being lower than that proposed by H. This is reasonable since

when the status quo is sufficiently low, the responder’s acceptance constraint should be slack

at the proposer’s dynamic ideal level of public good spending. Furthermore, since the static

ideal public good level for H is higher than that for L, one would expect that the dynamic

ideal for party H is higher than that for party L.

Guess (G2) says that when the status quo is higher than the cutoff specified in (G1),

but lower than the efficient level θH + θL, then the proposer maintains the status quo public

goods spending, and the responder’s acceptance constraint binds.

Guess (G3) says that when the status quo is higher than the efficient level, then the

proposer proposes public good spending that is equal to the efficient level and makes transfers

to the responder so that the responder is just willing to accept. The functional form guess

of Vi is motivated by the fact that per-period utility functions are linear in ln(g).
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Suppose σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL) is an equilibrium strategy-payoff

pair that satisfies (G1)-(G3). In the next few lemmas we establish some properties of σ and

(VH ,WH , VL,WL), and in Proposition 3 we use these to characterize the equilibrium.

Consider first the proposer’s problem (6) without imposing the responder’s acceptance

constraint (7). Since g enters the problem only through the constraint (7), the proposer’s

value function is independent of g, and we denote proposer i’s highest payoff without the

constraint (7) by V ∗i = maxg fi(g). Clearly, if z is a solution to proposer i’s problem without

the acceptance constraint, then z = (g′, xH , xL) where xi = 1−g′ for some g′ ∈ arg max fi(g).

Since V ∗i is proposer i’s highest payoff without the constraint (7), it follows that V ∗i ≥
Vi(g) for any g. Denote WL(g∗H) by W ∗

L and denote WH(g∗L) by W ∗
H .

Lemma 2. Under (G1), for all i, j ∈ {H,L} with j 6= i, (i) if g ≤ g∗i , then Vi(g) = V ∗i ,

χii(g) = 1− g∗i , χij(g) = 0, and (ii) if g ≤ g∗j , then Wi(g) = W ∗
i .

Proof: Part (i): By (G1), g∗i ∈ arg max fi(g). Since responder j accepts the proposal

(g∗i , 1−g∗i , 0) when the status quo is g = g∗i , it follows that Vi(g
∗
i ) ≥ V ∗i . Since V ∗i ≥ Vi(g) for

any g , it follows that Vi(g
∗
i ) = V ∗i , χii(g

∗
i ) = 1 − g∗i , and χij(g

∗
i ) = 0. The rest of (i) follows

immediately from (G1).

Part (ii) follows from (10).

Lemma 2 says that party i’s dynamic payoff as the proposer is constant and maximized for

g ≤ g∗i when the responder’s constraint is not binding. Next consider when the responder’s

acceptance constraint is binding. To begin, we characterize these dynamic payoffs over the

range g ∈ [g∗i , θH + θL].

Lemma 3. Under (G1) and (G2), if g ∈ [g∗L, g
∗
H ], then

VL(g) =
1

1− δp
[1− g + θL ln(g) + δ(1− p)W ∗

L], (13)

and if g ∈ [g∗H , θH + θL], then

Vi(g) =
(1− δp)(1− g)

(1− δ)(1 + δ − 2δp)
+

θi
1− δ

ln(g) (14)

for all i ∈ {H,L}.

Proof: Under (G2), if g ∈ [g∗i , θH + θL], then γi(g) = g. Since the responder accepts the

proposal (g, 1 − g, 0) if the status quo is g, this implies that χij(g) = 0 for g ∈ [g∗i , θH + θL]

and therefore

Vi(g) = 1− g + θi ln(g) + δ[pVi(g) + (1− p)Wi(g)]. (15)

By Lemma 2, if g ∈ [g∗L, g
∗
H ], then WL(g) = W ∗

L. Substituting in (15) and rearranging terms,

we get (13). Under (G2), if g ∈ [g∗H , θH +θL], then Wi(g) = Ki(g) and by Lemma 1, equation

(11) holds. Substituting (11) in (15) and rearranging terms, we get (14).
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Lemma 3 gives the functional form for proposer i in a range that includes its dynamic

ideal level of the public good g∗i . We are now in a position to fully characterize g∗i .

Lemma 4. Under (G1) and (G2), g∗L = θL and g∗H = 1+δ−2δp
1−δp θH .

Lemma 4 formalizes the intuition given at the beginning of this subsection. It says that

party L’s dynamic ideal g∗L is equal to its static ideal θL, while party H’s dynamic ideal g∗H
is strictly higher than its static ideal θH . To understand this result, note that the proposer’s

choice of the public good level has a static effect on the current-period payoff and a dynamic

effect on the continuation payoff because it determines next period’s status quo. Furthermore,

the dynamic effect creates two competing incentives for the incumbent: the incentive to raise

the public good level for fear that the opposition party comes into power next period, and

the incentive to lower the public good level to lower the bargaining power of the opposition

party if the incumbent stays in power next period. In the low-polarization case, the dynamic

effect of party L’s proposal is zero because even if party H becomes the proposer next period,

it would choose its dynamic ideal, which is sufficiently high. On the other hand, party H

is indeed concerned that party L would set the level of public good too low should party L

come into power, and the insurance incentive arising from this dynamic concern leads party

H to propose g∗H strictly higher than its static ideal θH . Clearly, a necessary condition for

an equilibrium to exist that satisfies (G1)-(G3) is that g∗H < θH + θL. By Lemma 4, this is

satisfied if θH
θL

< 1−δp
δ(1−p) . Since this condition implies that the parties’ preferences regarding

the value of public good are sufficiently similar, we call this the “low-polarization” case.

We now characterize the proposer’s dynamic payoff over the remainder of the range of g.

By (G3), the dynamic payoffs are given by Vi(g) = Ci ln(g) +Di for g ≥ θH + θL. Lemma 5

characterizes the values of Ci and Di.

Lemma 5. Under (G3),

Ci =
−(1− δp)θj + δ(1− p)θi

(1− δ)(1 + δ − 2δp)
, (16)

Di =
(1− δp)(1− θL − θH + (θH + θL) ln(θH + θL))

(1− δ)(1 + δ − 2δp)
, (17)

for i, j ∈ {H,L} with j 6= i.

Recall that we guess in (G3) that γi(g) = θH + θL for all g ≥ θH + θL. To ensure

that this holds in equilibrium – in particular, the responder accepts the proposal – we need

αj(g, (θH + θL, xH , xL)) = 1 with xj = 1 − θL − θH , xi = 0 for all g ≥ θH + θL, that is, the

responder would agree to bring the public spending to the efficient level of (θH + θL) after

receiving the rest of the surplus as private transfers. In what follows, we derive a condition

under which this holds in equilibrium, and we discuss what happens if the condition is violated

at the end of this subsection.
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Note that αj(g, (θH + θL, xH , xL)) = 1 with xj = 1− θL − θH , xi = 0 is satisfied if

1− (θH + θL) + θj ln(θH + θL) + δ[(1− p)Vj(θH + θL) + pWj(θH + θL)] ≥ Kj(g).

Substituting for Kj(g) and Wj(g) using Lemma 1 and substituting for Vj(g) = Cj ln(g) +

Dj for g ≥ θH + θL, the inequality simplifies to

1− (θH + θL) ≥ θj(1− δp)− θiδ(1− p)
(1− δ)(1 + δ − 2δp)

[ln(g)− ln(θH + θL)]. (18)

Since the right-hand side of inequality (18) is higher when j = H than when j = L, it

follows that if the inequality holds for j = H, then it holds for j = L as well. Moreover, the

right-hand side of (18) is increasing in g, implying that if the inequality holds for g = 1, then

it holds for all g ≥ θH + θL. Call the following inequality condition (∗).

1− (θH + θL) ≥ θH(1− δp)− θLδ(1− p)
(1− δ)(1 + δ − 2δp)

(− ln(θH + θL)). (∗)

We are now ready to establish the equilibrium characterization result in the low-polarization

case. For brevity, we use θ∗i to denote 1+δ−2δp
1−δp θi for i ∈ {H,L} for the rest of the paper.

Proposition 3. Suppose θH
θL
< 1−δp

δ(1−p) and condition (∗) holds. Then, there exists an equilib-

rium strategy-payoff pair σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL) that satisfies (G1)-

(G3). Specifically, for i, j ∈ {H,L}, j 6= i,

γi(g) =


g∗i for g ≤ g∗i ,

g for g∗i ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g,

χij(g) =

{
0 for g ≤ θH + θL,
θj(1−δp)−θiδ(1−p)
(1−δ)(1+δ−2δp) ln( g

θH+θL
) for θH + θL ≤ g,

and χii(g) = 1− γi(g)− χij(g), where g∗L = θL and g∗H = θ∗H .

Figure 3 is the numerical output from value function iterations. It illustrates the parties’

proposal strategies for the public good in an equilibrium that satisfies (G1)-(G3). We include

the illustration of parties’ proposal strategies for transfers in the Appendix.11

Equilibrium when condition (∗) fails: Denote by zej the proposal (θH + θL, xH , xL)

where xi = 0 and xj = 1− θH − θL. Recall that in Proposition 3, we assume that condition

(∗) holds, which ensures that the responder j accepts the proposal zej even when the status

quo is high. What happens if condition (∗) fails, that is, if αj(g, zej ) = 0 for g sufficiently

high? In that case, instead of proposing g′ = θH + θL, party i proposes g′ > θH + θL, x′i = 0,

and x′j = 1 − g′ such that party j is just willing to accept. Figure 4 illustrates the parties’

11In the low-polarization case when parameters satisfy condition (∗), all numerical output we have obtained
satisfy (G1)-(G3).
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Figure 3: γi(g) in low-polarization case when
(∗) holds
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Figure 4: γi(g) in low-polarization case when
(∗) fails

proposal strategies when condition (∗) fails. In the figure (G1)-(G2) are still satisfied, but

for very high status quos, (G3) is violated. As we show in Section 7, the failure of condition

(∗) does not affect the set of steady states.

High-polarization case

Now suppose θH
θL
> 1−δp

δ(1−p) , so polarization is high. Figure 5 below illustrates a numerical

output from value function iteration when this condition holds.
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Figure 5: γi(g) in high-polarization case

Figure 5 suggests equilibrium strategies that at first glance look very different from the

low-polarization case; however, upon further examination, we find parallels. First consider
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the strategy illustrated for party L. This strategy is in fact similar to party L’s strategy in

the low-polarization case: a constant value g∗L (in this case 0.2) is chosen at low levels of the

status quo, for intermediate values of the status quo, the public good is chosen to be equal

to the status quo, and for status quos above the efficient level (θH + θL = 0.6), the efficient

level of the public good is chosen.

For party H, the condition for high-polarization, θH
θL
> 1−δp

δ(1−p) , necessitates that g∗H charac-

terized in the low-polarization case (which is 0.67 for these parameter values) is now strictly

above the efficient level, 0.6. It is not surprising that at low values of the status quo, below

the point g
H

in Figure 5, party H still chooses the public good spending to be equal to its

dynamic ideal g∗H . Interestingly, Figure 5 shows that g∗H is also chosen at very high levels of

the status quo, which suggests that party L’s acceptance constraint is slack when the status

quo is very high. The intuition for setting the level of the public good above the static ideal

is the same as before: party H’s insurance motive dominates, but under high polarization,

what is dynamically optimal for party H is higher than the efficient level.

Between g
H

and a higher threshold g̃H , the level of public good proposed by party H is

between its dynamic ideal g∗H and the efficient level θH + θL. This is because the acceptance

constraint for party L binds and party H cannot propose its dynamic ideal, but party L’s

status quo payoff is low enough that party H does not have to propose the efficient level.

As the status quo increases, party L’s status quo payoff also increases, and party H has to

propose a level of the public good closer to the efficient level.

Between g̃H and θH + θL, the efficient level is proposed by party H. In this range, party

L’s status quo payoff is high enough that party H finds it optimal to propose the efficient

level of the public good and give party L some transfer so that it consents to raising the level

of the public good. Finally, between θH+θL and g∗H , it is optimal for party H to maintain the

status quo since it is closer to party H’s dynamic ideal, and it satisfies party L’s constraint.

It remains to formally characterize an equilibrium with these properties. Motivated by

Figure 5, we make the following guesses about an equilibrium strategy-payoff pair. Recall

that fi(g), defined in (12), is party i’s dynamic payoff when the public spending in the current

period is g and party i receives the remaining surplus.

(G1′) There exist g∗L and g∗H with g∗L < θH + θL < g∗H such that g∗i ∈ arg max fi(g) for

i ∈ {H,L}.

(G2′) If g ≤ g∗L, then πL(g) = πL(g∗L) and specifically γL(g) = g∗L; if g ∈ [g∗L, θH + θL], then

γL(g) = g; if g ≥ θH + θL, then γL(g) = θH + θL. If g ≥ g∗L, then WH(g) = KH(g).

(G3′) There exist g
H

and g̃H that satisfy g∗L ≤ g
H
< g̃H < θH + θL such that (i) πH(g) =

πH(g∗H) for g ≤ g
H

and g ≥ g∗H ; (ii) if g ∈ [g
H
, g∗H ] then WL(g) = KL(g); (iii) if g ≤ g̃H
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or if g ≥ θH + θL, then χHL (g) = 0; and (iv)

γH(g) =



g∗H for g ≤ g
H
,

g′ ∈ [θH + θL, g
∗
H ] for g

H
≤ g ≤ g̃H ,

θH + θL for g̃H ≤ g ≤ θH + θL,

g for θH + θL ≤ g ≤ g∗H ,

g∗H for g∗H ≤ g.

where g′ is a function of g satisfying θL ln(g′) + δ[(1− p)VL(g′) + pWL(g′)] = KL(g).

(G4′) If γi(g) = θH + θL, then Vi(g) is piecewise linear in g and ln(g).

In (G2′), we guess that γL(g) = θH + θL for all g ≥ θH + θL. This is analogous to the

low-polarization case and we need a condition similar to (∗) to guarantee that it holds in

equilibrium. This condition, which we call (∗∗), is given below. Recall that θ∗H = 1+δ−2δp
1−δp θH .

1− (θH + θL) + θH
1−δ ln(θH + θL) ≥ δ(1−p)(θH+θL−θ∗H)

(1−δ)(1+δ−2δp) + δ(1−p)θH
(1−δp)(1−δ) ln(θ∗H). (∗∗)

The derivation of condition (∗∗) is similar to that of condition (∗) and can be found in

Section 10.5.2 in the Appendix.

In (G3′), we guess that g∗L ≤ g
H

. In Lemma 10 in the Appendix, we find the value of

g
H

under (G1′)-(G4′) and we denote this value by ψ. We also show in the Appendix that

ψ ≥ θ∗L guarantees that g∗L ≤ g
H

in equilibrium.

Proposition 4. If θH
θL

> 1−δp
δ(1−p) , ψ ≥ θ∗L and condition (∗∗) holds, then there exists an

equilibrium strategy-payoff pair that satisfies (G1′)-(G4′).

Equilibrium when condition (∗∗) fails: Figure 6 illustrates the parties’ proposal

strategies when condition (∗∗) fails. The figure suggests that (G1′)-(G4′) are still satisfied

in equilibrium, except that for very high status quos, γL(g) > θH + θL, similar to the low-

polarization case. As we show in Section 7, the failure of condition (∗∗) does not affect the

set of steady states.

Equilibrium when condition ψ < θ∗L: Figure 7 illustrates the parties’ proposal strate-

gies when ψ < θ∗L. The figure suggests that two kinds of equilibria arise. In panel (a), the

equilibrium strategies still satisfy (G1′)-(G4′) with the exception that g∗L > g
H

. In this case,

party L’s dynamic ideal is g∗L = θ∗L > θL, an analog to party H’s dynamic ideal g∗H = θ∗H .

Intuitively, when g∗L > g
H

, party L’s choice of public good has a non-zero dynamic effect

because if party H comes into power in the next period, its proposal will depend on the

status quo if the status quo is above the threshold g
H

. This dynamic effect results in party

L’s dynamic ideal g∗L being higher than its static ideal θL. In panel (b), party H’s strategy

again satisfies the guesses, but party L’s strategy violates (G2′). In particular, instead of

proposing g′ = g when g ∈ [g∗L, θH + θL], now party L proposes a constant level g′ = θ∗L
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Figure 6: γi(g) in high-polarization case when condition (∗∗) does not hold

when the status quo is in a subinterval of [g∗L, θH + θL] (the “kink”). This is because in

this subinterval proposing g′ = θ∗L is a local maximizer for party L’s optimization problem

without the acceptance constraint and it is optimal to make this proposal (leaving party H’s

acceptance constraint slack).

Although the details of party L’s strategy violate certain aspects of (G2′) when ψ < θ∗L,

the efficiency implications and the set of steady states are still the same, as illustrated in

Figure 7 and will be formalized in Section 7. For this reason, we omit a full equilibrium

characterization when ψ < θ∗L.
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7 Equilibrium dynamics

We next discuss equilibrium dynamics. Let g0 denote the initial level of public good spending.

As we show in Proposition 5 below, there is a unique steady state, denoted by gs, correspond-

ing to each g0. Recall that for an equilibrium satisfying (G1)-(G3) in the low-polarization

case, g∗H = θ∗H = 1+δ−2δp
1−δp θH .

Proposition 5. In an equilibrium that satisfies (G1)-(G3) in the low-polarization case, if

g0 ≤ θ∗H , then gs = θ∗H ; if g0 ∈ [θ∗H , θH +θL], then gs = g0; if g0 ≥ θH +θL, then gs = θH +θL.

In an equilibrium that satisfies (G1′)-(G4′) in the high-polarization case, gs = θH + θL for

any g0.

The proposition says that in the low-polarization case, starting from a level of the public

good below the efficient level, the steady state is still below the efficient level, but above

what would be implemented with only discretionary programs. Starting from a level of the

public good above the efficient level, the steady state is at the efficient level. This is because

when the status quo is above the efficient level, parties find it optimal to reduce spending on

the public good to the efficient level. But once public good spending is at the efficient level,

any allocation that exhausts the budget is on the Pareto frontier; hence any proposal that

improves the payoff of the proposer must reduce the payoff of the responder. Because public

good spending is mandatory, the responder’s bargaining power prevents the proposer from

reducing its payoff, and hence this is a steady state.

Proposition 5 says that in the high-polarization case, the only steady state involves public

good spending equal to the efficient level θH+θL. The dynamics leading to this unique steady

state may be non-monotone. Specifically, if the initial status quo is below g̃H and L is the

initial proposer, L chooses γL(g) ∈ [θL, g̃H ] and this level persists until party H next comes

to power. When party H is next in power, party H sets a higher level of the pubic good

γH(g) ∈ [θH + θL, g
∗
H ], and the public good spending remains at this level until party L next

comes to power. When party L returns to power, he finds it optimal to reduce the level of

the public good to the efficient level, which is then sustained. Hence in the high-polarization

case, the level of the public good can potentially overshoot the steady state level even if the

initial state is low.

Proposition 5 says that in the equilibrium we constructed, the set of steady states is

[θ∗H , θH + θL] in the low-polarization case, and it is the singleton {θH + θL} in the high-

polarization case. In the next proposition, we show that there are no other steady states in

any other equilibrium under certain conditions.

Suppose σ and (VH ,WH , VL,WL) is an equilibrium strategy-payoff pair. Let Gs denote

the set of steady states, that is, for any g ∈ Gs, γi(g) = g for i ∈ {H,L}. Let G denote

the set of public good spending levels g such that when the status quo is g the acceptance

constraint binds regardless of the responder.
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Proposition 6. Let g ∈ Gs, and suppose that (i) VH and VL are differentiable on an open set

C such that g ∈ C ⊆ G, and (ii) the responders’ acceptance constraints satisfy Kuhn-Tucker

Constraint Qualification. Then g ∈ [θ∗H , θH+θL] in the low-polarization case, and g = θH+θL
in the high-polarization case.

We next discuss comparative statics on the set of steady states in the low-polarization

case. Since the highest steady state is constant at the efficient level, comparative statics on

the set of steady states is driven by comparative statics on the lowest steady state, which is

given by party H’s dynamic ideal level of the public good g∗H = θ∗H .

Proposition 7. In the low-polarization case, the lowest steady state θ∗H is decreasing in the

persistence of power p and is increasing in the discount factor δ.

The intuition for this result is simple. The static ideal level of public good spending for

party H is equal to θH , but dynamic considerations create incentives for party H to set a

level of the public good above its static ideal to increase its status quo payoff in the event that

it loses (proposing) power. As party H becomes more confident that it will still be in power

in the next period, its incentive to insure itself decreases, and hence it sets a level of the

public good closer to its static ideal, knowing that it will likely be able to set the same level

in the next period and receive transfers. Similarly, as party H’s discount factor increases, it

puts more weight on future payoffs, and hence is more sensitive to being out of power in the

future. To insure itself against being out of power in the next period, it increases the level

of the public good in the current period. This means that more patience or less persistence

in political power results in steady states closer to the efficient level.

8 Efficiency implications of mandatory programs

One objective of this paper is to examine the efficiency implications of mandatory programs.

In this section we explore this. First recall that if the public good spending is discretionary,

then in any Markov perfect equilibrium, the level of public spending is equal to θi if party i is

the proposer in that period. By Proposition 3, the equilibrium level of public good spending

proposed by party i is in [g∗i , θH + θL] under mandatory programs in the low-polarization

case. Since g∗i ≥ θi for all i ∈ {H,L}, the level of public good spending is higher when

it is mandatory than when it is discretionary, independent of the status quo. Since over-

provision of public good does not happen in equilibrium in the low-polarization case, this

means that the equilibrium level of public good spending is closer to the efficient level when it

is mandatory than when it is discretionary. In the high-polarization case, however, the level

of public good spending proposed by party H can be as high as g∗H , which is now higher than

θH + θL. Hence over-provision of the public good is possible, but as shown in Proposition 5,

it is only a transient state.
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How do mandatory programs affect the parties’ welfare? The next proposition shows

that mandatory programs improve the ex ante welfare of party H. More surprisingly, under

some parametric conditions – in particular, when the parties are sufficiently patient and the

persistence of power is sufficiently low – they also improve the ex ante welfare of party L.

For notational convenience, let

w(δ, p) = ln

(
(1 + δ − 2δp)2

δ(1− p)(1− δp)

)
− 1− δp
δ(1− p)

.

Proposition 8. Suppose it is equally likely ex ante for party H and party L to become the

proposer. Then party H’s steady state payoff is higher when public good spending is mandatory

than when it is discretionary. Moreover, in the low-polarization case, party L’s steady state

payoff is higher when public good spending is mandatory than when it is discretionary if

w(δ, p) > 0.

Notice if δ = 1, then w(δ, p) = ln(4)− 1 > 0. Hence, if the parties are sufficiently patient,

then even the party who places a lower weight on public good is better off ex ante if the

spending on public good is mandatory.

It is straightforward to verify that w(δ, p) is decreasing in p and increasing in δ. When

p = 0, w(δ, p) = ln ((1 + δ)2/δ) − 1/δ, and w(δ, 0) = 0 when δ ≈ 0.706. It follows that if

δ > 0.706, then there exists p > 0 such that for all p < p, w(δ, p) > 0, and even the low party

benefits ex ante from mandatory public good spending. Intuitively, when the persistence of

power is low, the insurance benefit from mandatory programs is high, making the parties

better off.

9 Concluding remarks

In this paper we analyze a model of dynamic bargaining between two political parties over the

allocation of a public good and private transfers to understand the efficiency implications of

mandatory programs. We find that allocation of the public good through a mandatory pro-

gram mitigates the problem of under-provision of the public good compared to discretionary

programs because it provides a channel for parties to insure themselves against power fluc-

tuations. As a result, mandatory programs provide payoff smoothing for the parties, that is,

the difference between each party’s payoff when in power and when out of power is smaller

under mandatory programs. This leads to higher ex ante dynamic payoffs for both parties,

even the one that places a low value on the public good, when the parties are sufficiently

patient, not too polarized, and persistence of power is sufficiently low.

Several extensions seem promising for future research. First, in this paper, we focus on a

particular status quo rule: spending on the public good is mandatory and private transfers

are discretionary. We find this to be a good approximation of the rules governing the U.S.

federal budget negotiations, but since there are potentially different rules governing how the
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status quo evolves, an interesting question is what would be the optimal status quo rule.

Separately, if the choice of mandatory versus discretionary programs is endogenous, what

would be the outcome?

The persistence of power is parameterized by p, the probability that the proposer last

period continues to be the proposer this period, and for simplicity, we assume it to be

exogenous in our model. Since success in bringing home “pork” typically results in more

favorable electoral outcomes, a second interesting extension is to consider how the efficiency

implications of mandatory programs change if power persistence is endogenously determined

by the policy choice as in Azzimonti (2011) and Bai and Lagunoff (2011).

In our model, the size of the budget to be allocated in each period is fixed. Another

extension would be to investigate the effect of mandatory programs if the size of the cake

to be shared among the legislators is endogenous and determined by policy choice, as in a

neoclassical growth model à la Battaglini and Coate (2008).

Finally, although parties place different values on the public good, each party’s value

stays constant over time in our model. If the values of the public good fluctuate over time

stochastically, then we expect mandatory programs to have other interesting effects absent in

the model with deterministic values. For example, a high level of public good spending that is

efficient in times when the the public good is especially valuable becomes inefficient when the

value of the public good decreases, and the inertia created by the mandatory program may

lead to over-provision of the public good. In some preliminary analysis of a model in which

the public good has the same value to both parties but fluctuates stochastically over time,

we find that over-provision of the public good can happen when the value of the public good

is low but the status quo is high. We plan to pursue this extension and others mentioned

above in future work.
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10 Appendix

10.1 Proof of Proposition 2

Party i’s Lagrangian for this problem is

Li = x′i + θi ln(g′) + λ1[1− g′ − x′i − x′j] + λ2[x
′
j + θj ln(g′)−Kj(g)],

where Kj(g) = θj ln(g). The first order conditions are g′, x′i, x
′
j, λ1, λ2 ≥ 0 and

θi
g′
− λ1 + λ2

θj
g′
≤ 0,

[
θi
g′
− λ1 + λ2

θj
g′

]
g′ = 0, (19)

1− λ1 ≤ 0, [1− λ1]x′i = 0, (20)

−λ1 + λ2 ≤ 0, [−λ1 + λ2]x
′
j = 0, (21)

1− g′ − x′i − x′j ≥ 0, [1− g′ − x′i − x′j]λ1 = 0, (22)

x′j + θj ln(g′)−Kj(g) ≥ 0, [x′j + θj ln(g′)−Kj(g)]λ2 = 0. (23)

First note that λ1 ≥ 1 by (20). Hence, for (22) to hold, we must have 1− g′−x′i−x′j = 0.

Next note that g′ > 0 because otherwise (19) is violated.

There are now four cases to consider.

• λ2 = 0: Since λ1 > 0, (21) implies that x′j = 0. So we have x′i + g′ = 1. Suppose g′ = 1.

Then, since λ2=0, by (19), λ1 = θi < 1, which contradicts (20). Hence, g′ < 1 and

x′i = 1− g′ > 0. By (20), x′i > 0 implies that λ1 = 1. Combined with (19), this implies

that g′ = θi, x
′
i = 1− θi, and x′j = 0. For the inequality in (23) to hold, we need g ≤ θi.

• λ2 > 0, x′i > 0 and x′j > 0: Then λ1 = λ2 = 1. Together with (19), (22) and (23), this

implies that

g′ = θH + θL,

x′i = 1− θL − θH −Kj(g) + θj ln(θH + θL),

x′j = Kj(g)− θj ln(θH + θL).

Since 0 ≤ x′i ≤ 1 and 0 ≤ x′j ≤ 1, for this to be a valid solution we need 0 ≤
Kj(g)− θj ln(θH + θL) ≤ 1− θH − θL, which holds if g ≥ θH + θL.

• λ2 > 0, x′i > 0 and x′j = 0: Then (23) implies that g′ = g. Since x′i > 0, λ1 = 1, and

(19) gives g′ = θi + λ2θj. Since 0 < λ2 ≤ λ1 = 1, it follows that this is a valid solution

only when θi < g ≤ θH + θL.

• λ2 > 0, x′i = 0 and x′j > 0: Then (21) gives λ1 = λ2, and (19) gives g′ = θi
λ1

+ θj > θj.

Since λ2 > 0, (23) implies that 1 − g′ + θj ln(g′) = θj ln(g), which is impossible since

g′ > θj.

To summarize, we have the solution given in Proposition 2.
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10.2 Proof of Lemma 4

We first show that g∗L = θL. Since VL(g) and WL(g) are constant for g ≤ g∗L by Lemma 2, it

follows that for g < g∗L, ∂fL(g)
∂g

= −1 + θL
g

. If g∗L > θL, then fL(θL) > fL(g∗L), contradicting

that g∗L ∈ arg max fL(g). Hence g∗L ≤ θL.

By Lemma 3, V ′L(g) = − 1
1−δp + θL

(1−δp)g and by Lemma 2, W ′
L(g) = 0 for g ∈ [g∗L, g

∗
H ].

Substituting these in f ′L(g), we get

f ′L(g) = −1 + θL
g

+ δpV ′L(g) = 1
1−δp(−1 + θL

g
),

If g∗L < θL, then fL(g∗) < fL(g) for any g ∈ (g∗L,min{θL, g∗H}), contradicting that g∗L ∈
arg max fL(g). Hence, g∗L ≥ θL.

Since g∗L ≤ θL and g∗L ≥ θL, it follows that g∗L = θL.

We next show that g∗H = 1+δ−2δp
1−δp θH . If g ∈ (g∗L, g

∗
H), then V ′H(g) = 0 by Lemma 2 and

W ′
H(g) = θH

(1−δp)g by Lemma 1, and therefore

f ′H(g) = −1 + θH
g

+ δ(1− p)W ′
H(g) = −1 + (1+δ−2δp)θH

(1−δp)g . (24)

If g∗H > (1+δ−2δp)θH
1−δp , then (24) implies that f ′H(g) < 0 for g ∈ ( (1+δ−2δp)θH

1−δp , g∗H), contradicting

that g∗H ∈ arg max fH(g). Hence g∗H ≤
(1+δ−2δp)θH

1−δp .

If g ∈ (g∗H , θH + θL), then as shown in (15), fH(g) = VH(g), and by (14)

f ′H(g) = − 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g . (25)

If g∗H < (1+δ−2δp)θH
1−δp , then (25) implies that f ′H(g) > 0 for g ∈ (g∗H ,

(1+δ−2δp)θH
1−δp ), contradicting

that g∗H ∈ arg max fH(g). Hence g∗H ≥
(1+δ−2δp)θH

1−δp .

Since g∗H ≤
(1+δ−2δp)θH

1−δp and g∗H ≥
(1+δ−2δp)θH

1−δp , it follows that g∗H = (1+δ−2δp)θH
1−δp .

10.3 Proof of Lemma 5

Under (G3), for i ∈ {H,L}, Wi(g) = Ki(g) for g ≥ θH + θL. By Lemma 1, Wi(g) = Ki(g) =
θj

1−δp ln(g) + δ(1−p)
1−δp Vi(g).

Consider any g ≥ θH + θL such that αj(g, (θH + θL, xH , xL)) = 1 with xi = 1− θL − θH ,

xj = 0. Under (G3), γi(g) = θH + θL and therefore

Vi(g) = χii(g) + θi ln(θH + θL) + δ[pVi(θH + θL) + (1− p)Wi(θH + θL)]. (26)

After substituting for Wi(θH + θL), we have

Vi(g) = χii(g) + 1+δ−2δp
1−δp θi ln(θH + θL) + δ(p+δ−2δp)

1−δp Vi(θH + θL). (27)

Since the responder’s acceptance constraint is binding at g, we get

χij(g) = Kj(g)− θj
1−δp ln(θH + θL)− δ(1−p)

1−δp Vj(θH + θL) (28)
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where

Kj(g) =
θj

1−δp ln(g) + δ(1−p)
1−δp Vj(g). (29)

Substituting χii(g) = 1 − χij(g) − θL − θH , Vi(g) = Ci ln(g) + Di, Vj(g) = Cj ln(g) + Dj

and matching the coefficients, we get (16) and (17).

10.4 Proof of Proposition 3

We proceed by first conjecturing an equilibrium strategy-payoff pair and then verifying that

it satisfies guesses (G1)-(G3), equilibrium conditions (E1)-(E3), and our assumption on αi

that all proposals made on the equilibrium path are satisfied.

We conjecture an equilibrium strategy-payoff pair such that for any i, j ∈ {H,L} with

j 6= i, the acceptance strategy αi(g, z) satisfies (E1), the proposal strategies are

γi(g) =


g∗i for g ≤ g∗i ,

g for g∗i ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g,

χij(g) =

{
0 for g ≤ θH + θL,
θj(1−δp)−θiδ(1−p)
(1−δ)(1+δ−2δp) ln( g

θH+θL
) for θH + θL ≤ g,

and χii(g) = 1−γi(g)−χij(g), where g∗L = θL and g∗H = (1+δ−2δp)θH
1−δp , and the associated payoff

functions are

VL(g) =


V ∗L for g < g∗L,

1
1−δp [1− g + θL ln(g) + δ(1− p)W ∗

L] for g∗L ≤ g ≤ g∗H ,
(1−δp)(1−g)

(1+δ−2δp)(1−δ) + θL
1−δ ln(g) for g∗H ≤ g ≤ θH + θL,

CL ln(g) +DL for θH + θL < g,

WL(g) =

{
W ∗
L for g ≤ g∗H ,
1

1−δp [θL ln(g) + δ(1− p)VL(g)] for g∗H ≤ g,

VH(g) =


V ∗H for g < g∗H ,

(1−δp)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g), for g∗H ≤ g ≤ θH + θL,

CH ln(g) +DH for θH + θL ≤ g,

WH(g) =

{
W ∗
H for g ≤ g∗L,
1

1−δp [θH ln(g) + δ(1− p)VH(g)] for g∗L ≤ g,
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where

Ci =
−(1−δp)θj+δ(1−p)θi

(1−δ)(1+δ−2δp) (30)

Di = (1−δp)(1−θL−θH+(θH+θL) ln(θH+θL))
(1−δ)(1+δ−2δp) , (31)

and

W ∗
L = δ(1−p)

(1+δ−2δp)(1−δ)(1− g
∗
H) + θL

1−δ ln(g∗H), (32)

V ∗L = 1
1−δp [1− θL + θL ln(θL) + δ(1− p)W ∗

L], (33)

V ∗H =
(1−δp)(1−g∗H)

(1+δ−2δp)(1−δ) + θH
1−δ ln(g∗H), (34)

W ∗
H = 1

1−δp [θH ln(g∗L) + δ(1− p)V ∗H ]. (35)

This conjecture clearly satisfies (G2) and (G3). (Note that by substituting Wj in (8), we

can verify that Wj(g) = Kj(g) for g ≥ g∗i .) So we only need to verify that (G1) is satisfied;

in particular, that g∗i ∈ arg max fi(g) where fi(g) = 1−g+θi ln(g)+ δ[pVi(g)+(1−p)Wi(g)].

Since Vi and Wi are continuous under our conjecture of the equilibrium strategy-payoff

pair, fi is continuous. It is also piecewise differentiable. Specifically,

f ′L(g) =


−1 + θL

g
for g < g∗H ,

− 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g for g ∈ (g∗H , θH + θL),

−1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp

CL

g
for g > θH + θL,

f ′H(g) =


−1 + θH

g
for g < g∗L,

−1 + 1+δ−2δp
1−δp

θH
g

for g ∈ (g∗L, g
∗
H),

− 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g for g ∈ (g∗H , θH + θL),

−1 + 1+δ−2δp
1−δp

θH
g

+ δ(p+δ−2δp)
1−δp

CH

g
for g > θH + θL.

Claim 1. Under our conjecture of the equilibrium strategy-payoff pair, g∗i ∈ arg max fi(g) for

all i ∈ {H,L}.

Proof : Consider i = L first. Given fL described above, f ′L(g) > 0 if g < g∗L, f ′L(g) = 0 if

g = g∗L, and f ′L(g) < 0 if g ∈ (g∗L, g
∗
H).

Since f ′L(g) is decreasing for g ∈ (g∗H , θH + θL), and at g = g∗H , − 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g =

− 1−δp
(1−δ)(1+δ−2δp) + θL(1−δp)

(1−δ)(1+δ−2δp)θH
< 0, it follows that f ′L(g) < 0 for g ∈ (g∗H , θH + θL).

If (1+δ−2δp)θL+δ(p+δ−2δp)CL

1−δp ≤ 0, then f ′L(g) < 0 for g > θH+θL. If (1+δ−2δp)θL+δ(p+δ−2δp)CL

1−δp >

0, then f ′L(g) is decreasing in g for θH+θL ≤ g. Since at g = θH+θL, f ′L(g) = −(1−δp)θH+(δ−δp)θL
(θH+θL)(1+δ−2δp)(1−δ)

<

0, it follows that f ′L(g) < 0 for g > θH + θL.

To summarize, f ′L(g) > 0 for g < g∗L, f ′L(g) = 0 if g = g∗L, f ′L(g) > 0 for g > g∗L, and

therefore g∗L ∈ arg max fL(g).

Now consider i = H. Given fH described above, f ′H(g) > 0 for g < g∗H , f ′H(g) = 0 for

g = g∗H . By a similar argument as for party L, fH(g) is decreasing for g > g∗H . Therefore
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g∗H ∈ arg max fH(g).

Claim 1 shows that (G1) is satisfied. We next verify that conditions (E1)-(E3) in the

definition of equilibrium strategy-payoff pair are satisfied. Condition (E1) is satisfied by

construction.

The values V ∗L , W ∗
L, V ∗H and W ∗

H satisfy

V ∗L = 1− g∗L + θL ln(g∗L) + δ[pV ∗L + (1− p)W ∗
L],

W ∗
L = θL ln(g∗H) + δ[(1− p)V ∗L + pW ∗

L],

V ∗H = 1− g∗H + θH ln(g∗H) + δ[pV ∗H + (1− p)WH(g∗H)],

W ∗
H = θH ln(g∗L) + δ[(1− p)V ∗H + pW ∗

H ].

These together with Lemmas 2, 3 and 5 show that (E3) is satisfied, i.e., these payoff

functions are consistent with the strategy profile.

The remainder of this section shows that (E2) is satisfied. The next claim establishes

that Ki(g) is increasing in g, which is useful later in the proof.

Claim 2. Under our conjecture of the equilibrium strategy-payoff pair, Ki(g) is strictly in-

creasing in g for all i ∈ {H,L}.

Proof: Suppose g ≤ g∗L. Then Ki(g) = θi ln(g) + δ[(1− p)V ∗i + pW ∗
i ] and therefore Ki(g)

is increasing in g.

Suppose g ∈ [g∗L, g
∗
H ]. Then KL(g) = θL ln(g) + δ[(1 − p)VL(g) + pW ∗

L] where VL(g) =
1

1−δp [1− g + θL ln(g) + δ(1− p)W ∗
L]. Hence,

K ′L(g) = 1+δ−2δp
1−δp

θL
g
− δ(1−p)

1−δp . (36)

Since θL
θH

> δ(1−p)
1−δp , we have K ′L(g) > 0.

Also, since KH(g) = θH ln(g) + δ(1 − p)V ∗H + δp[ θH
1−δp ln(g) + δ(1 − p)V ∗H ], it follows that

KH(g) is increasing in g.

Suppose g ∈ [g∗H , θH + θL]. Then Ki(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g). Substituting for Vi(g)

and taking the derivative, we get

K ′i(g) = 1
1−δ

[
−δ(1−p)
1+δ−2δp + θi

g

]
.

Since θL
θH

> δ(1−p)
1−δp , it follows that K ′i(g) > 0 for g ∈ [g∗H , θH + θL].

Suppose g ≥ θH + θL. Then again Ki(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g). Substituting for Vi(g)

and taking the derivative, we get

K ′i(g) = θi
(1−δp)g + δ(1−p)

1−δp
Ci

g
=

θi(1−δp)−θjδ(1−p)
(1−δ)(1+δ−2δp)g

where j ∈ {H,L}, j 6= i.

For i = H, θH(1 − δp) − θLδ(1 − p) > 0 and therefore K ′H(g) > 0. For i = L, since
θH
θL
< (1−δp)/(δ(1−p)) in the low-polarization case, it follows that θL(1−δp)−θHδ(1−p) > 0

and therefore K ′L(g) > 0.
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The claim immediately implies that the responder accepts any proposal with a g′ higher

than the status quo g and if the responder accepts a proposal with g′ lower than the status

quo, then the responder must receives a positive transfer. Formally,

Corollary 1. Consider z′ = (g′, x′H , x
′
L) ∈ B. For any i ∈ {H,L}, (i) if g′ ≥ g, then

αi(g, z′) = 1; (ii) if g′ < g and αi(g, z′) = 1, then x′i > 0.

For notational convenience, let UP
i (z) = xi + θi ln(g) + δ[pVi(g) + (1 − p)Wi(g)] and

UR
i (z) = xi + θi ln(g) + δ[(1 − p)Vi(g) + pWi(g)]. That is, UP

i (z) (UR
i (z)) denotes party i’s

payoff when the implemented budget is z in the current period and party i is the proposer

(responder). The next claim establishes that all proposals made in equilibrium are accepted

by the responder.

Claim 3. Under our conjecture of the equilibrium strategy-payoff pair, αj(g, πi(g)) = 1 for

all g and all i, j ∈ {H,L}, j 6= i.

Proof : Consider j = H first.

If g ≤ g∗L, then UR
H(πL(g)) = θH ln(g∗L) + δ[(1−p)V ∗H +pW ∗

H ] ≥ KH(g) = θH ln(g) + δ[(1−
p)V ∗H + pW ∗

H ] and therefore αH(g, πL(g)) = 1.

If g ∈ [g∗L, θH+θL], then γL(g) = g and χLH(g) = 0, which implies that UR
H(πL(g)) = KH(g)

and therefore αH(g, πL(g)) = 1.

If g > θH+θL, then γL(g) = θH+θL and χLH(g) = KH(g)−θH ln(θH+θL)−δ[pVH(θH+θL)+

(1−p)WH(θH +θL)], which implies that UR
H(πL(g)) = KH(g) and therefore αH(g, πL(g)) = 1.

Now consider j = L.

If g ≤ g∗H , then UR
L (πH(g)) = θL ln(g∗H) + δ[(1− p)VL(g∗H) + pWL(g∗H)]. Since K ′L(g) > 0

by Claim 2 and UR
L (πH(g)) = KL(g∗H), it follows that UR

L (πH(g)) ≥ KL(g) and therefore

αL(g, πH(g)) = 1 for g ≤ g∗H .

If g ≥ g∗H , then an argument similar to the case of j = H shows that UR
L (πH(g)) = KL(g)

and therefore αL(g, πH(g)) = 1.

We next show that the proposer has no profitable one-shot deviation. Consider the

following three cases for party L.

• g ≤ g∗L: Since g∗L = arg max fL(g), party L has no incentive to deviate from proposing

γL(g) = g∗L and χLH(g) = 0.

• g∗L < g ≤ θH + θL: We first show that proposing πL(g) is better than proposing

(ĝ, x̂H , x̂L) with ĝ > g and then show that it is better than proposing (ĝ, x̂H , x̂L) with

ĝ < g.

– ĝ > g: Consider ẑ = (ĝ, 0, 1 − ĝ). Then UP
L (ẑ) = fL(ĝ). As shown in the proof

of Claim 1, fL(ĝ) is decreasing in ĝ for ĝ > g∗L. Since πL(g) = (g, 0, 1 − g), this
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implies that UP
L (πL(g)) > UP

L (ẑ) for any ĝ > g > g∗L. Since party L’s payoff is

decreasing in xH , UP
L (ẑ) ≥ UP

L ((ĝ, x̂H , x̂L)) for any (ĝ, x̂H , x̂L) ∈ B, it follows that

UP
L (πL(g)) > UP

L ((ĝ, x̂H , x̂L)) for any ĝ > g > g∗L. Also, since αH(g, πL(g)) = 1

by Claim 3, and UP
L (πL(g)) is higher than UP

L ((g, 0, 0)), the status quo payoff, it

follows that proposing πL(g) is better than proposing any (ĝ, x̂H , x̂L) ∈ B with

ĝ > g.

– ĝ < g: If ĝ < g, then by Corollary 1, αH(g, (ĝ, x̂H , x̂L)) = 1 only if x̂H > 0. Since

party L’s payoff is strictly decreasing in xH , we only need to consider proposals

such that the responder’s acceptance constraint (7) is binding. Using (7),

x̂H = KH(g)− θH ln(ĝ)− δ[(1− p)VH(ĝ) + pWH(ĝ)]. (37)

Consider ẑ = (ĝ, x̂H , x̂L) such that (37) holds. Substituting for x̂H from (37) and

taking the derivative, we get
∂UP

L

∂ĝ
= −1 + θH+θL

ĝ
+ δ[(1− p)V ′H(ĝ) + pW ′

H(ĝ)] + δ[pV ′L(ĝ) + (1− p)W ′
L(ĝ)]

(38)

For ĝ < g∗L,
∂UP

L

∂ĝ
= −1 + θH+θL

ĝ
> 0.

For g∗L < ĝ < g∗H ,
∂UP

L

∂ĝ
= −1+ θH+θL

ĝ
+ δp

1−δp
θH
ĝ

+ δp
1−δp(−1+ θL

g
) = 1

1−δp(−1+ θH+θL
ĝ

) >

0.

For g∗H < ĝ < g ≤ θH + θL,
∂UP

L

∂ĝ
= −1 + 1+δ−2δp

1−δp
θL
ĝ

+ δ(p+δ−2δp)
1−δp V ′L(ĝ) + 1

1−δp
θH
ĝ

+
δ(1−p)
1−δp V

′
H(ĝ) = 1

1−δ (−1 + θH+θL
g

) > 0.

So UP
L (ẑ) is increasing in ĝ for ĝ < g, and therefore the proposer has no incentive

to make any proposal with ĝ < g.

• g > θH + θL: Consider ẑ = (ĝ, 0, 1 − ĝ) with ĝ > g. By Corollary 1, αH(g, ẑ) = 1.

Since UP
L (ẑ) = fL(ĝ) and fL(ĝ) is decreasing in ĝ, it follows that UP

L ((g, 0, 1 − g)) ≥
UP
L ((ĝ, 0, 1− ĝ)) if ĝ ≥ g.

Now consider ẑ = (ĝ, x̂H , x̂L) such that ĝ ≤ g and αH(g, ẑ) = 1. By Corollary 1,

x̂H > 0 if ĝ > g. Again we only need to consider proposals such that the respon-

der’s acceptance constraint is binding. As before, we obtain (38). Substituting for

V ′L(ĝ),W ′
L(ĝ), V ′H(ĝ),W ′

H(ĝ), we get

∂UP
L

∂ĝ
= −1 + 1+δ−2δp

1−δp
θL
ĝ

+ δ(p+δ−2δp)
1−δp

CL

ĝ
+
(

1
1−δp

θH
ĝ

+ δ(1−p)
1−δp

CH

ĝ

)
= −1 + θH+θL

ĝ
.

Since γL(g) = θH + θL, it follows that UP
L (πL(g)) ≥ UP

L (ẑ) for any ẑ = (ĝ, x̂H , x̂L) such

that ĝ < g and αH(g, ẑ) = 1. Combined with UP
L ((g, 0, 1 − g)) ≥ UP

L ((ĝ, 0, 1 − ĝ)) if

ĝ ≥ g, πL(g) is optimal for party L to propose.

Party H also has no incentive to deviate. We omit the details of the proof because the
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argument is similar to that for party L.

10.5 Proof of Proposition 4

To prove Proposition 4, we first establish some properties of an equilibrium strategy-payoff

pair that satisfies (G1′)-(G4′) in the high-polarization case.

10.5.1 Properties of an equilibrium strategy-payoff pair that satisfies (G1′)-

(G4′) in the high-polarization case

Suppose σ = ((πH , αH), (πL, αL)) and (VH ,WH , VL,WL) is an equilibrium strategy-payoff

pair that satisfies (G1′)-(G4′). In what follows, we establish several properties of σ and

(VH ,WH , VL,WL).

Recall that V ∗i = maxg fi(g) is proposer i’s highest payoff without the responder’s con-

straint (7). As in the low-polarization case, we denote WL(g∗H) by W ∗
L and WH(g∗L) by W ∗

H .

Lemma 6. Under (G1′) and (G2′), if g ≤ g∗L, then VL(g) = V ∗L , χLL(g) = 1− g∗L, χLH(g) = 0,

and WH(g) = W ∗
H . Under (G3′), if g ≤ g

H
or g ≥ g∗H , then VH(g) = V ∗H , χHH(g) = 1 − g∗H ,

χHL (g) = 0, and WL(g) = W ∗
L.

We omit the proof since it is similar to that of Lemma 2.

Lemma 7. Under (G1′)-(G3′), (i) if g ∈ [g∗L, gH ], then VL(g) = 1
1−δp [1− g+ θL ln(g) + δ(1−

p)W ∗
L], (ii) if g ∈ [g

H
, θH + θL], then

VL(g) = (1−δp)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g), (39)

and (iii) if g ∈ [θH + θL, g
∗
H ], then

VH(g) = (1−δp)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g). (40)

We omit the proof since it is similar to that of Lemma 3.

Lemma 8. Under (G1′)-(G3′), g∗L = θL and g∗H = 1+δ−2δp
1−δp θH .

Proof: We omit the proof for g∗L since it is the same as that of Lemma 4.

Now consider g∗H . If g > g∗H , then V ′H(g) = 0 by Lemma 6 and W ′
H(g) = θH

(1−δp)g by Lemma

1, and therefore

f ′H(g) = −1 + θH
g

+ δ(1− p)W ′
H(g) = −1 + (1+δ−2δp)θH

(1−δp)g . (41)

If g∗H < (1+δ−2δp)θH
1−δp , then (41) implies that f ′H(g) > 0 for g ∈ (g∗H ,

(1+δ−2δp)θH
1−δp ), contradicting

that g∗H ∈ arg max fH(g). Hence g∗H ≥
(1+δ−2δp)θH

1−δp . If g ∈ (θH + θL, g
∗
H), then by (G3′),

fH(g) = VH(g), and by (40)

f ′H(g) = − 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g . (42)
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If g∗H > (1+δ−2δp)θH
1−δp , then (42) implies that f ′H(g) < 0 for g ∈ ( (1+δ−2δp)θH

1−δp , g∗H), contradicting

that g∗H ∈ arg max fH(g). Hence g∗H ≤
(1+δ−2δp)θH

1−δp .

Since g∗H ≤
(1+δ−2δp)θH

1−δp and g∗H ≥
(1+δ−2δp)θH

1−δp , it follows that g∗H = (1+δ−2δp)θH
1−δp .

Recall that we guess in (G4′) that Vi is piecewise linear in g and ln(g) if γi(g) = θH + θL.

Specifically, suppose that for g ∈ [θH+θL, g
∗
H ], VL(g) takes the form VL(g) = B1

Lg+C1
L ln(g)+

D1
L; for g ≥ g∗H such that γL(g) = θH+θL, VL(g) takes the form VL(g) = B2

Lg+C2
L ln(g)+D2

L;

for g ∈ [g̃H , θH + θL], VH(g) takes the form VH(g) = B1
Hg + C1

H ln(g) +D1
H .

Lemma 9. Under (G1′)-(G4′), B1
i = δ(1−p)(1−δp)

(1−δ)(1+δ−2δp) and C1
i = − θj

1−δ for i, j ∈ {H,L} with

j 6= i, and B2
L = 0, C2

L = − θH
1−δp .

Proof: Similar to the proof of Lemma 5, we can write

Vi(g) = χii(g) + 1+δ−2δp
1−δp θi ln(θH + θL) + δ(p+δ−2δp)

1−δp Vi(θH + θL),

where

χij(g) = Kj(g)− θj
1−δp ln(θH + θL)− δ(1−p)

1−δp Vj(θH + θL),

Kj(g) =
θj

1−δp ln(g) + δ(1−p)
1−δp Vj(g).

If g ∈ [θH + θL, g
∗
H ], then VH(g) = (1−δp)(1−g)

(1−δ)(1+δ−2δp) + θH
1−δ ln(g) by Lemma 7. Substituting in

KH(g), we get

KH(g) = δ(1−p)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g).

Substituting in VL(g) and matching coefficients, we get B1
L = δ(1−p)

(1−δ)(1+δ−2δp) and C1
L = − θH

1−δ .

A similar argument shows that B1
H = δ(1−p)

(1−δ)(1+δ−2δp) and C1
H = − θL

1−δ .

To find B2
L and C2

L, note that if g ≥ g∗H , then by Lemma 6, VH(g) = V ∗H . By Lemma 1,

KH(g) = θH
1−δp ln(g) + δ(1−p)

1−δp V
∗
H . Matching coefficients gives B2

L = 0 and C2
L = − θH

1−δp .

We next find the thresholds g
H

and g̃H that are consistent with (G1′)-(G4′). Recall that

θ∗H = 1+δ−2δp
1−δp θH .

Lemma 10. Under (G1′)-(G4′), the threshold g
H
∈ (0, θH + θL) is given by g

H
= ψ where

ψ = min{g : δ(1−p)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g)

= δ(1−p)
(1−δ)(1+δ−2δp) + 1

1−δp

[
θL − δ(1−p)

1−δ θH

]
ln(θ∗H)

+ δ(1−p)
(1−δp)(1−δ)

[
(θH + θL)[ln(θH + θL)− 1] + δ(1−p)

1+δ−2δpθ
∗
H

]
.} (43)

Proof: By (G3′) (ii) and (iv), the threshold g
H

satisfies

θL ln(g∗H) + δ[(1− p)VL(g∗H) + pWL(g∗H)] = WL(g
H

) = KL(g
H

). (44)
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By(G3′)(ii), WL(g∗H) = KL(g∗H). Hence by Lemma 1, we can rewrite the left-hand side of

the above equation as

θL
1−δp ln(g∗H) + δ(1−p)

1−δp VL(g∗H). (45)

By (G1′), g∗H > θH + θL. Hence γL(g∗H) = θH + θL by (G2′). So VL(g∗H) can be written as

VL(g∗H) = χLL(g∗H) + 1+δ−2δp
1−δp θL ln(θH + θL) + δ(p+δ−2δp)

1−δp VL(θH + θL),

where χLL(g∗H) = 1− χLH(g∗H)− γL(g∗H) = 1− χLH(g∗H)− θH − θL, and

χLH(g∗H) =KH(g∗H)− θH
1−δp ln(θH + θL)− δ(1−p)

1−δp VH(θH + θL),

KH(g∗H) = θH
1−δp ln(g∗H) + δ(1−p)

1−δp VH(g∗H).

By Lemma 7,

VL(θH + θL) = (1−δp)(1−θH−θL)
(1−δ)(1+δ−2δp) + θL

1−δ ln(θH + θL),

VH(θH + θL) = (1−δp)(1−θH−θL)
(1−δ)(1+δ−2δp) + θH

1−δ ln(θH + θL),

VH(g∗H) =
(1−δp)(1−g∗H)

(1−δ)(1+δ−2δp) + θH
1−δ ln(g∗H).

Substituting in all expressions, (45) becomes

δ(1−p)
(1−δ)(1+δ−2δp) + 1

1−δp

[
θL − δ(1−p)

1−δ θH

]
ln(g∗H)

+ δ(1−p)
(1−δp)(1−δ)

[
(θH + θL)[ln(θH + θL)− 1] + δ(1−p)

1+δ−2δpg
∗
H

]
.

By (G3′)(ii) and Lemma 1, we can write KL(g
H

) as

KL(g
H

) = θL
1−δp ln(g

H
) + δ(1−p)

1−δp VL(g
H

).

By Lemma 7 this becomes

KL(g
H

) = θL
1−δ ln(g

H
) + δ(1−p)

(1−δ)(1+δ−2δp)(1− gH).

Hence g
H

is given by

θL
1−δ ln(g

H
) + δ(1−p)

(1−δ)(1+δ−2δp)(1− gH) =

δ(1−p)
(1−δ)(1+δ−2δp) + 1

1−δp

[
θL − δ(1−p)

1−δ θH

]
ln(g∗H)

+ δ(1−p)
(1−δp)(1−δ)

[
(θH + θL)[ln(θH + θL)− 1] + δ(1−p)

1+δ−2δpg
∗
H

]
. (46)

The above condition gives at most two values for g
H

since the left-hand side is strictly

concave in g
H

. We show below only one solution is lower than θH + θL, and hence is a

candidate for g
H

by (G3′). We show that at θH + θL, the left-hand side is strictly greater

than the right-hand side of (46). Substituting g
H

= θH + θL the condition simplifies to

θL(1−δ)−θHδ(1−p)
(1−δp)(1−δ) ln(θH + θL) + δ2(1−p)2

(1−δ)(1+δ−2δp)(1−δp)(θH + θL) >

θL(1−δ)−θHδ(1−p)
(1−δp)(1−δ)) ln(g∗H) + δ2(1−p)2

(1−δ)(1+δ−2δp)(1−δp)(g
∗
H). (47)
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The left-hand side and right-hand side are the same function, h(g) = θL(1−δ)−θHδ(1−p)
(1−δp)(1−δ) ln(g)+

δ2(1−p)2
(1−δ)(1+δ−2δp)(1−δp)g, evaluated at θH + θL and g∗H , respectively. It is straightforward to show

h′(g) < 0. Since θH + θL < g∗H , it follows (47) is true. Given (47) is true, the value that

satisfies (46) such that g
H
< θH + θL must be the minimum of the two solutions.

Lemma 11. Under (G1′)-(G4′), the threshold g̃H ∈ (0, θH + θL) is given by
δ(1−p)(1−g̃H)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g̃H) = δ(1−p)(1−θL−θH)
(1−δ)(1+δ−2δp) + θL

1−δ ln(θH + θL). (48)

Proof: By (G3′) (ii) and (iv), the threshold g̃H satisfies

θL ln(θH + θL) + δ[(1− p)VL(θH + θL) + pWL(θH + θL)] = KL(g̃H). (49)

By Lemma 7, VL(g) = (1−δp)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g) for g ∈ [g̃H , θH + θL]. Substituting this in

(49) and using Lemma 1, we get (48).

10.5.2 Derivation of condition (∗∗)

Note that αH(g, (θH + θL, xH , xL)) = 1 with xH = 1− θL − θH , xL = 0 for all g ≥ θH + θL is

satisfied if

1− (θH + θL) + θH ln(θH + θL) + δ[(1− p)VH(θH + θL) + pWH(θH + θL)] ≥ KH(g).

Substituting for KH(g) and WH(g) using Lemma 1 and substituting for VH(g) = V ∗H for

g ≥ g∗H using Lemma 6, the inequality becomes

1− (θH + θL) + θH
1−δp ln(θH + θL) + δ(1−p)

1−δp VH(θH + θL) ≥ θH
1−δp ln(g) + δ(1−p)

1−δp V
∗
H . (50)

Note that the right-hand side of (50) is increasing in g, implying that if the inequality holds

for g = 1, then it holds for all g ≥ θH + θL. Substituting for VH(θH + θL) and VH(g∗H) using

Lemma 7 and letting g = 1, we can rewrite inequality (50) to be

1− (θH + θL) + θH
1−δ ln(θH + θL) ≥ δ(1−p)(θH+θL−θ∗H)

(1−δ)(1+δ−2δp) + δ(1−p)θH
(1−δp)(1−δ) ln(θ∗H). (∗∗)

10.5.3 Proof of Proposition 4

We proceed by first conjecturing an equilibrium strategy-payoff pair and then verifying that

it satisfies guesses (G1′)-(G4′), equilibrium conditions (E1)-(E3), and our assumption on αi

that all proposals made on the equilibrium path are satisfied.

We conjecture an equilibrium strategy-payoff pair such that for any i, j ∈ {H,L} with

j 6= i, the acceptance strategy αi(g, z) satisfies (E1), the proposal strategies are

γL(g) =


g∗L for g ≤ g∗L,

g for g∗L ≤ g ≤ θH + θL,

θH + θL for θH + θL ≤ g,
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χLH(g) =

{
0 for g ≤ θH + θL,

KH(g)− θH ln(θH + θL)− δ[(1− p)VH(θH + θL) + pWH(θH + θL)] for θH + θL ≤ g,

γH(g) =



g∗H for g ≤ g
H
,

g′ ∈ [θH + θL, g
∗
H ] for g

H
≤ g ≤ g̃H ,

θH + θL for g̃H ≤ g ≤ θH + θL,

g for θH + θL ≤ g ≤ g∗H ,

g∗H for g∗H ≤ g,

χHL (g) =


0 for g ≤ g̃H ,

KL(g)− θL ln(θH + θL)− δ[(1− p)VL(θH + θL) + pWL(θH + θL)] for g ∈ [g̃H , θH + θL],

0 for g ≥ θH + θL,

and χii(g) = 1− γi(g)−χij(g), where g∗L = θL, g∗H = (1+δ−2δp)θH
1−δp , g

H
satisfies (43), g̃H satisfies

(49), g′ satisfies

θL ln(g′) + δ[(1− p)VL(g′) + pWL(g′)] = KL(g), (51)

and the associated payoff functions are

VL(g) =



V ∗L for g ≤ g∗L,
1

1−δp(1− g + θL ln(g) + δ(1− p)W ∗
L) for g∗L ≤ g ≤ g

H
,

(1−δp)(1−g)
(1−δ)(1+δ−2δp) + θL

1−δ ln(g) for g
H
≤ g ≤ θH + θL,

B1
Lg + C1

L ln(g) +D1
L for θH + θL ≤ g ≤ g∗H ,

C2
L ln(g) +D2

L for g∗H ≤ g,

WL(g) =

{
W ∗
L for g ≤ g

H
and g ≥ g∗H ,

1
1−δp [θL ln(g) + δ(1− p)VL(g)] for g

H
≤ g ≤ g∗H ,

VH(g) =



V ∗H for g ≤ g
H
,

(1−δp)(1−γH(g))
(1−δ)(1+δ−2δp) + θH

1−δ ln(γH(g)) for g
H
≤ g ≤ g̃H ,

B1
Hg + C1

H ln(g) +D1
H for g̃H ≤ g ≤ θH + θL,

(1−δp)(1−g)
(1−δ)(1+δ−2δp) + θH

1−δ ln(g) for θH + θL ≤ g ≤ g∗H ,

V ∗H for g∗H ≤ g,

WH(g) =

{
W ∗
H for g ≤ g∗L,
1

1−δp [θH ln(g) + δ(1− p)VH(g)] for g∗L ≤ g,
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where B1
i = δ(1−p)

(1−δ)(1+δ−2δp) , C
1
i = − θj

1−δ , D
1
i = 1−δp

(1−δ)(1+δ−2δp) + (θH+θL)[ln(θH+θL)−1]
1−δ , C2

L = − θH
1−δp ,

and

W ∗
L = δ(1−p)

(1+δ−2δp)(1−δ)(1− g
∗
H) + θL

1−δ ln(g∗H), (52)

V ∗L = 1
1−δp [1− θL + θL ln(θL) + δ(1− p)W ∗

L], (53)

V ∗H =
(1−δp)(1−g∗H)

(1+δ−2δp)(1−δ) + θH
1−δ ln(g∗H), (54)

W ∗
H = 1

1−δp [θH ln(g∗L) + δ(1− p)V ∗H ]. (55)

We next verify that this conjecture satisfies (G1′)-(G4′).

For (G1′), since g∗L = θL and g∗H = (1+δ−2δp)θH
1−δp , clearly g∗L < θH + θL < g∗H in the high-

polarization case, and it only remains to show that g∗i ∈ arg max fi(g). In Claim 4 below,

we show that (i) g∗H ∈ arg max fH(g), and (ii) g∗L ∈ arg max fL(g) when ψ ≥ θ∗L, where ψ is

defined in (43).

Since Vi and Wi are continuous under our conjecture of the equilibrium strategy-payoff

pair, fi is continuous. It is also piecewise differentiable. Specifically,

f ′L(g) =



−1 + θL
g

for g < g∗L,
1

1−δp [−1 + θL
g

] for g ∈ (g∗L, gH),

− 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g for g ∈ (g
H
, θH + θL),

−1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp (B1

L +
C1

L

g
) for g ∈ (θH + θL, g

∗
H),

−1 + 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp

C2
L

g
for g ≥ g∗H ,

f ′H(g) =



−1 + θH
g

for g < g∗L,

−1 + 1+δ−2δp
1−δp

θH
g

for g ∈ (g∗L, gH),

−1 + 1+δ−2δp
1−δp

θH
g

+ δ(p+δ−2δp)
1−δp (− 1−δp

(1−δ)(1+δ−2δp) + θH
(1−δ)γH(g)

)dγ
H(g)
dg

for g ∈ (g
H
, g̃H),

−1 + 1+δ−2δp
1−δp

θH
g

+ δ(p+δ−2δp)
1−δp (B1

H +
C1

H

g
) for g ∈ (g̃H , θH + θL),

− 1−δp
(1−δ)(1+δ−2δp) + θH

(1−δ)g for g ∈ (θH + θL, g
∗
H),

−1 + 1+δ−2δp
1−δp

θH
g

for g > g∗H .

Claim 4. Under our conjecture of the equilibrium strategy-payoff pair, (i) g∗H ∈ arg max fH(g),

and (ii) if ψ ≥ θ∗L, then g∗L ∈ arg max fL(g).

Proof: Consider part (i) first.

• g < g∗L: f ′H(g) is decreasing in g. At g∗L = θL, f ′H(g∗L) > 0, hence for g < g∗L, f ′H(g) > 0.

• g ∈ (g∗L, gH): f ′H(g) is decreasing in g. Since g
H
< g∗H and f ′H(g) = −1 +

g∗H
g

, it follows

that f ′H(g) > 0 for g ∈ (g∗L, gH).
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• g ∈ (g
H
, g̃): We compare fH(g) in this range to fH(g∗H). First define the functions

n(x) = 1− x+ θH(1+δ−2δp)
1−δp ln(x), and

m(y) = δ(p+δ−2δp)
1−δp

[
(1−δp)(1−y)

(1−δ)(1+δ−2δp) + θH
1−δ ln(y)

]
.

By these definitions fH(g∗H) = n(g∗H) + m(g∗H), and for g ∈ (g
H
, g̃), fH(g) = n(g) +

m(γH(g)). Further note that g∗H = arg maxn(x), and g∗H = arg maxm(y), hence

n(g∗H) ≥ n(g) for all g, and m(g∗H) ≥ m(γH(g)) for all γH(g), so fH(g∗H) is greater

than fH(g) for g ∈ (g
H
, g̃).

• g ∈ (g̃H , θH+θL): f ′H(g) strictly decreasing in g. Since f ′H(θH+θL) = θHδ(1−p)−θL(1−δp)
(1−δ)(1+δ−2δp)(θH+θL)

>

0, f ′H(g) > 0 everywhere in this interval.

• g ∈ (θH + θL, g
∗
H): f ′H(g) strictly decreasing in g. Since − 1−δp

(1−δ)(1+δ−2δp) + θH
(1−δ)g∗H

= 0, it

follows that for g ∈ (θH + θL, g
∗
H), f ′H(g) > 0.

• g > g∗H : f ′H(g) = −1 +
g∗H
g
< 0.

To summarize, fH(g) is strictly increasing for g ∈ (g̃H , g
∗
H), and strictly decreasing for

g > g∗H hence g∗H ∈ arg max fH(g) for g > g̃H . Further, we showed for g ∈ (g
H
, g̃H),

fH(g) ≤ fH(g∗H) and for g < g
H

, fH(g) is increasing. Hence, by continuity of fH(g),

g∗H ∈ arg max fH(g) for all g.

Now consider Part (ii).

• g < g∗L: then f ′L(g) > 0.

• g ∈ (g∗L, gH): f ′L(g) is strictly decreasing in g. Since f ′L(g) = 1
1−δp [−1 + θL

g
], it follows

that f ′L(g) < 0 for g ∈ (g∗L, gH).

• g ∈ (g
H
, θH + θL): f ′L(g) is strictly decreasing in g. Since g

H
= ψ by Lemma 10, we

have g
H

= ψ ≥ θ∗L. Since − 1−δp
(1−δ)(1+δ−2δp) + θL

(1−δ)g = 0 if g = θL(1+δ−2δp)
1−δp , it follows that

f ′L(g) < 0 for all g ∈ (g
H
, θH + θL).

• g ∈ (θH+θL, g
∗
H): The monotonicity of f ′L(g) is determined by (1+δ−2δp)θL

1−δp +
δ(p+δ−2δp)C1

L

1−δp .

If (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C1
L

1−δp > 0, then f ′L(g) is strictly decreasing in g. Since −1 +
1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp (B1

L+
C1

L

g
) = θLδ(1−p)−θH(1−δp)

(1−δ)(1+δ−2δp)(θH+θL)
≤ 0 if g = θH +θL, it follows that

f ′L(g) < 0 for g ∈ (θH + θL, g
∗
H). If (1+δ−2δp)θL

1−δp +
δ(p+δ−2δp)C1

L

1−δp ≤ 0, then f ′L(g) is weakly

increasing in g. Since−1+ 1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp (B1

L+
C1

L

g
) = −1+ θL

θH
− δ(p+δ−2δp)

(1+δ−2δp)(1−δp) < 0

when g = g∗H , it follows that f ′L(g) < 0 for g ∈ (θH + θL, g
∗
H).
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• g > g∗H : The monotonicity of f ′L(g) is determined by (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C2
L

1−δp . If
(1+δ−2δp)θL

1−δp +
δ(p+δ−2δp)C2

L

1−δp > 0, then f ′L(g) is strictly decreasing in g. Since −1 +
1+δ−2δp
1−δp

θL
g

+ δ(p+δ−2δp)
1−δp

C2
L

g
= −1 + θL

θH
− δ(p+δ−2δp)

(1−δp)(1+δ−2δp) < 0 if g = g∗H , it follows that

f ′L(g) < 0 for g > g∗H . If (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C2
L

1−δp ≤ 0, then f ′L(g) is weakly increasing

in g. In this case, f ′L(g) = −1 + (1+δ−2δp)θL
1−δp +

δ(p+δ−2δp)C2
L

1−δp < 0 when g = 1 and therefore

f ′L(g) < 0 for g > g∗H .

To summarize, fL(g) is strictly increasing for g < g∗L and strictly decreasing for g > g∗L
and therefore g∗L ∈ arg max fL(g).

The conjectured equilibrium strategy-payoff pair clearly satisfies (G2′)-(G4′) with the

exception of g∗L ≤ g
H
< g̃H < θH + θL. When ψ ≥ θ∗L, we have g∗L = θL < θ∗L ≤ ψ = g

H
. To

verify that g
H
< g̃H < θH + θL, we next establish some monotonicity properties of KL.

Claim 5. Under our conjecture of the equilibrium strategy-payoff pair, KL(g) is strictly

increasing for g ∈ [0, θL(1+δ−2δp)
δ(1−p) ) and strictly decreasing for g ∈ ( θL(1+δ−2δp)

δ(1−p) , 1].

Proof: Consider the following cases:

• g ≤ g∗L: Then KL(g) = θL ln(g) + δ[(1− p)V ∗L + pW ∗
L], which is increasing in g.

• g ∈ [g∗L, gH ]: Then

KL(g) = θL ln(g) + δ(1−p)
1−δp (1− g + θL ln(g) + δ(1− p)W ∗

L) + δpW ∗
L,

Taking the derivative, we get

K ′L(g) = 1+δ−2δp
1−δp

θL
g
− δ(1−p)

1−δp ,

and K ′L(g) > 0 if and only if g < 1+δ−2δp
δ(1−p) θL.

• g ∈ [g
H
, θH + θL]: Then

KL(g) = θL
1−δp ln(g) + δ(1−p)

1−δp VL(g)

= θL
1−δp ln(g) + δ(1−p)

1−δp

[
(1−δp)(1−g)

(1−δ)(1+δ−2δp) + θL
1−δ ln(g)

]
.

Taking the derivative, we get

K ′L(g) = 1
1−δ

[
−δ(1−p)
1+δ−2δp + θL

g

]
,

and K ′L(g) > 0 if and only if g < 1+δ−2δp
δ(1−p) θL. Note that since θH + θL >

1+δ−2δp
δ(1−p) θL in

the high-polarization case, K ′L(g) < 0 for g ∈ (1+δ−2δp
δ(1−p) θL, θH + θL).
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• g ∈ [θH + θL, g
∗
H ]: Then

KL(g) = θL
1−δp ln(g) + δ(1−p)

1−δp VL(g)

= θL
1−δp ln(g) + δ(1−p)

1−δp (B1
Lg + C1

L ln(g) +D1
L).

Taking the derivative, we get

K ′L(g) = 1
(1−δp)(1−δ)

[
(1−δ)θL−δ(1−p)θH

g
+ δ2(1−p)2

1+δ−2δp

]
,

which is increasing in g since (1− δ)θL − δ(1− p)θH < 0 in the high-polarization case.

Straightforward calculation shows that K ′L(g) < 0 for g = g∗H . Hence, KL(g) is strictly

decreasing for g ∈ [θH + θL, g
∗
H ].

• g ≥ g∗H : Then

KL(g) = θL ln(g) + δ[(1− p)VL(g) + pWL(g)] (56)

= θL ln(g) + δ(1− p)(C2
L ln(g) +D2

L) + δpW ∗
L. (57)

Since θH
θL
> (1− δp)/(δ(1− p)) in the high-polarization case, this implies that

K ′L(g) = θL
g
− δ(1−p)θH

(1−δp)g < 0. (58)

Hence, KL(g) is strictly increasing in g for g ∈ [0, θL(1+δ−2δp)
δ(1−p) ) and strictly decreasing in g

for g ∈ ( θL(1+δ−2δp)
δ(1−p) , 1].

Recall that in our conjectured equilibrium strategy-payoff pair, g
H

satisfies KL(g
H

) =

KL(g∗H) and g̃H satisfies KL(g̃H) = KL(θH +θL). Since KL is continuous, KL(g) = −∞ when

g = 0, and θL(1+δ−2δp)
δ(1−p) < θH + θL < g∗H in the high-polarization case, it follows from Claim

5 that there exist g
H
< g̃H < θL(1+δ−2δp)

δ(1−p) < θH + θL < g∗H such that KL(g
H

) = KL(g∗H) and

KL(g̃H) = KL(θH + θL).

Corollary 2. There exist g
H

and g̃H where g
H
< g̃H < θL(1+δ−2δp)

δ(1−p) < θH + θL < g∗H such that

KL(g
H

) = KL(g∗H) and KL(g̃H) = KL(θH + θL).

We next verify that (E1)-(E3) in the definition of equilibrium strategy-payoff pair are

satisfied. Condition (E1) is satisfied by construction.

The values V ∗L , W ∗
L, V ∗H and W ∗

H satisfy

V ∗L = 1− g∗L + θL ln(g∗L) + δ[pV ∗L + (1− p)W ∗
L],

W ∗
L = θL ln(g∗H) + δ[(1− p)V ∗L + pW ∗

L],

V ∗H = 1− g∗H + θH ln(g∗H) + δ[pV ∗H + (1− p)WH(g∗H)],

W ∗
H = θH ln(g∗L) + δ[(1− p)V ∗H + pW ∗

H ].

These together with Lemmas 6, 7 and 9 show that (E3) is satisfied, that is, these payoff

functions are consistent with the strategy profile.

The next claim establishes that all proposals made in equilibrium are accepted.
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Claim 6. Under our conjecture of the equilibrium strategy-payoff pair, αj(g, πi(g)) = 1 for

all g and all i, j ∈ {H,L}, j 6= i.

Proof: We omit the proof for j = H since it is similar to that for Claim 3.

Now consider j = L.

If g ≤ g∗L, then UR
L (πH(g)) = θL ln(g∗H)+δ[(1−p)V ∗L +pW ∗

L] ≥ KL(g) = θL ln(gH)+δ[(1−
p)V ∗L + pW ∗

L] and therefore αL(g, πH(g)) = 1.

If g ∈ [g∗L, gH ], then UR
L (πH(g)) = θL ln(g∗H) + δ[(1 − p)V ∗L + pW ∗

L] = KL(g∗H). Since

KL(g
H

) = KL(g∗H) andKL is increasing in g on [g∗L, g] by Claim 5, it follows that UR
L (πH(g)) ≥

KL(g) and therefore αL(g, πH(g)) = 1 for g ∈ [g∗L, gH ].

If g ∈ [g
H
, g∗H ], then UR

L (πH(g)) = KL(g) and αL(g, πH(g)) = 1.

If g ∈ [g∗H , 1], then UR
L (πH(g)) = θL ln(g∗H) + δ[(1− p)V ∗L + pW ∗

L] = KL(g∗H). Since KL(g)

is decreasing in g on [g∗H , 1] by Claim 5, it follows that it follows that UR
L (πH(g)) ≥ KL(g)

and therefore αL(g, πH(g)) = 1 for g ∈ [g∗H , 1].

The remainder of the proof shows that (E2) is satisfied. The next claim establishes that

KH(g) is increasing, which is useful later in the proof.

Claim 7. Under our conjecture of the equilibrium strategy-payoff pair, if ψ ≥ θ∗L, then KH(g)

is strictly increasing.

Proof:

• g ≤ g∗L: Then KH(g) = θH ln(g) + δ[(1 − p)V ∗H + pW ∗
H ] and therefore it is strictly

increasing.

• g ∈ [g∗L, gH ]: Then KH(g) = θH ln(g) + δ(1 − p)V ∗H + δp
1−δp [θH ln(g) + δ(1 − p)V ∗H ] and

therefore it is strictly increasing.

• g ∈ [g
H
, g̃H ]: ThenKH(g) = θH

1−δp ln(g)+ δ(1−p)
1−δp VH(g), andK ′H(g) = θH

(1−δp)g+ δ(1−p)
1−δp V

′
H(g).

The function VH(g) is

VH(g) = (1−δp)(1−γH(g))
(1−δ)(1+δ−2δp) + θH

1−δ ln(γH(g)),

and γH(g) is given by (51), which implies

θL
1−δp ln(γH(g)) + δ(1−p)

1−δp

[
δ(1−p)

(1−δ)(1+δ−2δp)γ
H(g)− θH

1−δ ln(γH(g)) +D1
L

]
= θL

1−δp ln(g) + δ(1−p)
1−δp

[
(1−δp)(1−g)

(1−δ)(1+δ−2δp) + θL
1−δ ln(g)

]
. (59)

Rearranging (59) gives

ln(γH(g)) =
[

1−δp
θL(1−δ)−θHδ(1−p)

]
[θL ln(g) + δ(1−p)(1−g)

1+δ−2δp −
δ2(1−p)2γH(g)

(1−δp)(1+δ−2δp)

− δ(1−p)(1−δ)
1−δp D1

L].
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Substituting ln(γH(g)) into VH(g) and taking the derivative, we have

V ′H(g) = θHθL(1−δp)
(1−δ)[θL(1−δ)−θHδ(1−p)]g

− θHδ(1−p)(1−δp)
(1−δ)[θL(1−δ)−θHδ(1−p)](1+δ−2δp)

− dγH(g)
dg

θL(1−δp)−θHδ(1−p)
(1+δ−2δp)[θL(1−δ)−θHδ(1−p)]

,

and K ′H(g) = A(g) +B(g) where

A(g) = θH
(1−δp)g + θHδ(1−p)

(1−δ)[θL(1−δ)−θHδ(1−p)]

[
θL
g
− δ(1−p)

1+δ−2δp

]
,

B(g) = − δ(1−p)[θL(1−δp)−θHδ(1−p)]
(1−δp)(1+δ−2δp)[θL(1−δ)−θHδ(1−p)]

dγH(g)
dg

.

Consider A(g) first. The coefficient on 1/g can be either positive or negative.

Suppose first the coefficient on 1/g is positive. Then A(g) is strictly decreasing in g

and is minimized at g = g̃H . By Corollary 2, g̃H < [θL(1 + δ − 2δp)]/[δ(1 − p)]. Since

A(g) = θHδ(1− p)/[θL(1− δp)(1 + δ− 2δp)] > 0 when g = [θL(1 + δ− 2δp)]/[δ(1− p)],
it follows that A(g) > 0 for g ∈ [g

H
, g̃H ] in this case.

Now suppose the coefficient on 1/g is negative, then A(g) is strictly increasing in

g and is minimized at g = g
H

. We have g
H

= ψ ≥ θ∗L. When g = θ∗L, A(g) =

θH [θHδ(1− p)− θL(1− δp)]/[θL(1 + δ − 2δp)[θHδ(1− p)− θL(1− δ)]], which is strictly

positive in the high-polarization case. It follows that A(g) > 0 for g ∈ [g
H
, g̃H ].

Now consider B(g). Since γH(g) satisfies (59), by the implicit function theorem,
dγH(g)
dg

= γH(g)(1−δp)[θL(1+δ−2δp)−gδ(1−p)]
g[(1+δ−2δp)(θL(1−δ)−θHδ(1−p))+γH(g)δ2(1−p)2] . (60)

At γH(g) = g∗H the denominator of dγH(g)/dg is negative. Since the denominator is

increasing in γH(g) and γH(g) ≤ g∗H , the denominator is negative. Since g ≤ g̃H <

[θL(1 + δ − 2δp)]/[δ(1 − p)], the numerator is positive, and therefore dγH(g)/dg < 0.

Since this is the high-polarization case and dγH(g)/dg < 0, it follows that B(g) > 0.

To summarize, K ′H(g) = A(g) +B(g) > 0 for g ∈ [g
H
, g̃H ].

• g ∈ [g̃H , θH + θL]: Then KH(g) = θH
1−δp ln(g) + δ(1−p)

1−δp VH(g). Substituting for VH(g) and

taking the derivative, we get

K ′H(g) = (1−δ)θH−δ(1−p)θL
(1−δp)(1−δ)g + δ(1−p)

1−δp B
1
H . (61)

If (1− δ)θH − δ(1− p)θL > 0, then, K ′H(g) > 0 since B1
H > 0.

If (1−δ)θH−δ(1−p)θL < 0, then K ′H(g) is increasing in g. We have g̃H > g
H

= ψ ≥ θ∗L.

Plugging g = θ∗L in (61), we get K ′H(g) = θH(1−δp)−θLδ(1−p)
(1−δp)(1+δ−2δp)θL

> 0, and therefore KH(g) is

strictly increasing for g ∈ [g̃H , θH + θL].

• g ∈ [θH + θL, g
∗
H ]: Then KH(g) = θH

1−δp ln(g) + δ(1−p)
1−δp VH(g). Substituting for VH(g) and

taking the derivative, we get

K ′H(g) = θH
(1−δ)g −

δ(1−p)
(1−δ)(1+δ−2δp) ,
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which is strictly higher than 0 for g ≤ g∗H .

• g > g∗H : Then KH(g) = θH
1−δp ln(g) + δ(1−p)

1−δp V
∗
H , which is clearly strictly increasing in g.

Hence, KH(g) is strictly increasing.

We next show that the proposer has no profitable one-shot deviation. We omit the proof

for party L since it is similar to that in the proof of Proposition 3.

Recall that UP
H(z) denotes party H’s payoff when the implemented budget is z in the

current period and party H is the proposer. We next establish monotonicity properties of

UP
H(z), which is useful for later part of the proof.

For any status quo g, consider proposals z′ = (g′, x′H , x
′
L) such that the responder’s

acceptance constraint (7) is binding. That is,

x′L = KL(g)− θL ln(g′)− δ[(1− p)VL(g′) + pWL(g′)] = KL(g)−KL(g′). (62)

Substituting in the proposer’s payoff function, we get

UP
H(z′) = 1− g′ − x′L + θH ln(g′) + δ[pVH(g′) + (1− p)WH(g′)]⇒ (63)

∂UP
H

∂g′
= −1 + θH+θL

g′
+ δ[(1− p)V ′L(g′) + pW ′

L(g′)] + δ[pV ′H(g′) + (1− p)W ′
H(g′)] (64)

Substituting for V ′L,W
′
L, V

′
H ,W

′
H , we get closed-form solution for

∂UP
H

∂g′
except when g ∈

(g
H
, g̃H). Specifically, if g′ < g∗

L
, then

∂UP
H

∂g′
= θH+θL

g′
− 1 > 0; if g′ ∈ (g∗

L
, g

H
), then

∂UP
H

∂g′
=

1+δ−2δp
1−δp ( θH+θL

g′
− 1) > 0; if g′ ∈ (g̃H , θH + θL), then

∂UP
H

∂g′
= 1+δ−2δp

1−δp ( θH+θL
g′
− 1) > 0; if

g′ ∈ (θH + θL, g
∗
H), then

∂UP
H

∂g′
= 1

1−δp( θH+θL
g′
− 1) < 0; if g′ > g∗H , then

∂UP
H

∂g′
= θH+θL

g′
− 1 < 0.

Note that
∂UP

H

∂g′
= f ′H(g′) +K ′L(g′). Also, if g′ ∈ (g

H
, g̃H), then dγH(g′)

dg′
=

K′L(g
′)

K′L(γ
H(g′))

. Hence,

for g′ ∈ (g
H
, g̃H),

∂UP
H

∂g′
= −1 + 1+δ−2δp

1−δp
θH
g′

+K ′L(g′)C(g′) (65)

where

C(g′) = 1 + δ(p+δ−2δp)[−(1−δp)γH(g′)+(1+δ−2δp)θH ]
[(1−δ)θL−δ(1−p)θH ](1+δ−2δp)+γH(g′)δ2(1−p)2 (66)

Straightforward calculation shows that C(g′) > 0 in the high-polarization case where θH
θL

>
1−δp
δ(1−p) . Since K ′L(g′) > 0 for g′ < g̃ by Claim 5 and Corollary 2, it follows that

∂UP
H

∂g′
> 0 for

g′ ∈ (g
H
, g̃H).

To show that proposer H has no profitable one-shot deviation, consider the following

cases.

• g ≤ g
H

or g ≥ g∗H : In this case, γH(g) = g∗H and χHL (g) = 0.

Since g∗H ∈ arg max fH(g), party H has no incentive to deviate from proposing γH(g) =

g∗H and χHL (g) = 0.
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• g
H
≤ g ≤ g̃H : In this case, γH(g) ∈ [θH + θL, g

∗
H ] and χHL (g) = 0.

We first show that proposing πH(g) is better than proposing (ĝ, x̂H , x̂L) with ĝ > γH(g)

and then show that it is better than proposing (ĝ, x̂H , x̂L) with ĝ < γH(g).

– ĝ > γH(g): Since γH(g) > θH + θL > θL(1+δ−2δp)
δ(1−p) , by Claim 5, for ĝ > γH(g),

αL(g, (ĝ, x̂H , x̂L)) = 1 only if x̂L > 0. Since party L’s payoff is strictly decreasing

in xL, we only need to consider proposals such that the responder’s acceptance

constraint (7) is binding.

Since UP
H(ẑ) is decreasing in ĝ for ĝ > γH(g) ≥ θH + θL as shown before, the

proposer has no incentive to make any proposal with ĝ > γH(g).

– g̃H ≤ ĝ < γH(g): Consider ẑ = (ĝ, 1 − ĝ, 0). Then UP
H(ẑ) = fH(ĝ). As shown

in the proof of Claim 4, fH(ĝ) is increasing in ĝ for g̃H < ĝ < g∗H . Since

πH(g) = (γH(g), 1 − γH(g), 0) where γH(g) < g∗H , it follows that UP
H(πH(g)) >

UP
H(ẑ) for any ĝ < γH(g) ≤ g∗H . Since party H’s payoff is decreasing in xL,

UP
H(ẑ) ≥ UP

H((ĝ, x̂H , x̂L)) for any (ĝ, x̂H , x̂L) ∈ B, it follows that UP
H(πH(g)) >

UP
H((ĝ, x̂H , x̂L)) for any ĝ < γH(g) ≤ g∗H . Hence the proposer has no incentive to

deviate and make a proposal with g̃H ≤ ĝ < γH(g).

– g ≤ ĝ ≤ g̃H . Consider ẑ = (ĝ, 1 − ĝ, 0). Then UP
H(ẑ) = fH(ĝ). Recall that for

g ≥ g∗L, fH(g) = 1− g + θH(1+δ−2δp)
1−δp ln(g) + δ(p+δ−2δp)

1−δp VH(g). Also, for g
H
≤ ĝ ≤ g̃,

VH(ĝ) = VH(γH(ĝ)). Hence, fH(γH(ĝ))−fH(ĝ) = −γH(ĝ)+ĝ+ θH(1+δ−2δp)
1−δp (ln(γH(ĝ))−

ln(ĝ) > 0 since ĝ ≤ γH(ĝ) ≤ θH(1+δ−2δp)
1−δp . Since γH(ĝ) < γH(g) and fH(g) is

increasing in (θH + θL, g
∗
H) as shown in the proof of Claim 4, it follows that

fH(ĝ) ≤ fH(γH(ĝ)) ≤ fH(γH(g)) and therefore UP
H(πH(g)) ≥ UP

H(ẑ) for any

ĝ ∈ [g, g̃H ]. Hence proposing πH(g) is better than proposing any (ĝ, x̂H , x̂L) ∈ B
with g ≤ ĝ ≤ g̃H .

– ĝ < g: By Corollary 2, g < g̃H < θL(1+δ−2δp)
δ(1−p) . Hence, for ĝ < g, αL(g, (ĝ, x̂H , x̂L)) =

1 only if x̂L > 0 by Claim 5.

Consider ẑ = (ĝ, x̂H , x̂L) such that (62) holds. Since UP
H(ẑ) is increasing in ĝ

for ĝ < g as shown before, the proposer has no incentive to deviate and make a

proposal with ĝ < g.

• g̃H ≤ g ≤ θH + θL: In this case, γH(g) = θH + θL and χHL (g) ≥ 0.

Let h(g) = max{g′ ∈ [0, 1] : KL(g′) = KL(g)} and l(g) = min{g′ ∈ [0, 1] : KL(g′) =

KL(g)}. By Claim 5, h(g) ∈ [1+δ−2δp
δ(1−p) θL, θH + θL] and l(g) ∈ [g̃H ,

1+δ−2δp
δ(1−p) θL].

– ĝ ≥ h(g): For ẑ = (ĝ, x̂H , x̂L), Claim 5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if

x̂L > 0. Consider ẑ such that (62) holds. As shown before, UP
H(ĝ) is increasing for
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ĝ ∈ [h(g), θH + θL) and decreasing for ĝ > θH + θL, and therefore the proposer has

no incentive to deviate and make any proposal with ĝ ≥ h(g) and ĝ 6= θH + θL.

– ĝ ∈ [l(g), h(g)]: Consider ẑ = (ĝ, 1 − ĝ, 0). Since UP
H(ẑ) = fH(ĝ) and fH(ẑ) is

increasing for ĝ ∈ [l(g), h(g)], it follows that UP
H((h(g), 1 − h(g), 0)) > UP

H(ẑ) for

any ĝ ∈ (l(g), h(g) and therefore the proposer has no incentive to deviate and

make a proposal with ĝ ∈ [l(g), h(g)].

– ĝ < l(g): For ẑ = (ĝ, x̂H , x̂L), Claim 5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if

x̂L > 0. Consider ẑ such that (62) holds. As shown before, UP
H(ĝ) is increasing

for ĝ < l(g), and therefore the proposer has no incentive to deviate and make any

proposal with ĝ ≥ l(g).

• g ∈ [θH + θL, g
∗
H ]: In this case, γH(g) = g and χHL (g) = 0. Recall that l(g) = min{g′ ∈

[0, 1] : KL(g′) = KL(g)}. In this case, l(g) ∈ [g
H
, g̃H ].

– ĝ > g: For ẑ = (ĝ, x̂H , x̂L), Claim 5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if

x̂L > 0. Consider ẑ such that (62) holds. As shown before, UP
H(ĝ) is decreasing

for ĝ > θH + θL, and therefore the proposer has no incentive to deviate and make

any proposal with ĝ ≥ g.

– g̃H ≤ ĝ < g: Consider ẑ = (ĝ, 1 − ĝ, 0). Since UP
H(ẑ) = fH(ĝ) and fH(ĝ) is

increasing if g̃H ≤ ĝ < g, it follows that the proposer has no incentive to deviate

and make a proposal with ĝ ∈ [g̃H , g).

– l(g) ≤ ĝ ≤ g̃H . Consider ẑ = (ĝ, 1 − ĝ, 0). Note that for ĝ ∈ [l(g), g̃H ], fH(ĝ) <

fH(γH(ĝ)). Also, since γH(ĝ) < g and therefore fH(γH(ĝ) < fH(g), it follows

that fH(ĝ) < fH(g). Hence the proposer has no incentive to deviate and make a

proposal with ĝ ∈ [l(g), g̃H ].

– ĝ ≤ l(g): For ẑ = (ĝ, x̂H , x̂L), Claim 5 implies that αL(g, (ĝ, x̂H , x̂L)) = 1 only if

x̂L > 0. Consider ẑ such that (62) holds. As shown before, UP
H(ĝ) is increasing

for ĝ ≤ l(g), and therefore the proposer has no incentive to deviate and make any

proposal with ĝ ≤ l(g).

To summarize, party H has no incentive to deviate from πH(g) for any g ∈ [0, 1].

10.6 Proof of Proposition 6

Fix g ∈ Gs. First we show that g ∈ G, that is, the responder’s acceptance constraint binds

when the status quo is in Gs. This follows immediately from the following claim:

Claim 8. For any g ∈ Gs and i, j ∈ {H,L} with i 6= j, χij(g) = 0.
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Proof: Fix g ∈ Gs. By definition ofGs, γi(g) = g. Suppose to the contrary that χij(g) > 0

for j 6= i. Let π̃i = (γ̃i, χ̃iH , χ̃
i
L) be an alternative proposal strategy for player i such that

π̃i(g′) = πi(g′) for g′ 6= g, γ̃i(g) = γi(g), χ̃ij(g) = 0 and χ̃ii(g) = χii(g) + χij(g) > χii(g). Note

that π̃i satisfies the responder’s acceptance constraint (7) when i is the proposer. Then π̃i

yields the same payoff to player i for any g′ 6= g, and strictly higher payoff when the status

quo is g, contradicting that πi is an equilibrium proposal strategy.

Since g ∈ G, we can simplify the proposer i’s maximization problem by using Lemma 1

to substitute for Wi and Wj. Define the function hi : B → R as

hi(g, xH , xL) = xi + θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g).

Claim 9. For any g ∈ Gs and i ∈ {H,L},
Vi(g) = max

z=(g′,x′H ,x
′
L)∈B

x′i + 1−2δp+δ
1−δp θi ln(g′) + δ(p+δ−2δp)

1−δp Vi(g
′)

s.t. hj(z) ≥ Kj(g), g′ ∈ G (67)

where Kj(g) = θi
1−δp ln(g) + δ(1−p)

1−δp Vi(g).

Proof: By definition of Gs, the proposal (g, χiH(g), χiL(g)) is a solution to the maximiza-

tion problem given in (6) and (7). By Claim 8, Gs ⊆ G, and so the proposal (g, χiH(g), χiL(g))

is also a solution to (6) and (7) when the maximization is over z = (g′, x′H , x
′
L) ∈ B with

g′ ∈ G. Since the acceptance constraint binds for any g ∈ G, we use Lemma 1 to substitute

for Wi and Wj, resulting in the maximization problem given in Claim 9.

We are now ready to prove Proposition 6. Suppose hH and hL satisfy Kuhn-Tucker

Constraint Qualification. The Lagrangian for party i’s problem, for i ∈ {H,L}, is

Li = x′i + 1−2δp+δ
1−δp θi ln(g′) + δ(p+δ−2δp)

1−δp Vi(g
′)

+λ1i[1− x′i − x′j − g′] + λ2i[x
′
j +

θj
1−δp ln(g′) + δ(1−p)

1−δp Vj(g
′)−Kj(g)]

where j ∈ {H,L}, j 6= i.

By the Kuhn-Tucker Theorem (see Takayama (1985), Theorem 1.D.3), the first order

necessary conditions for (g′, x′H , x
′
L) to be a a solution to (67) are λ1i ≥ 0, λ2i ≥ 0, g′ ≥ 0,

x′H ≥ 0, x′L ≥ 0, and

1− λ1i ≤ 0, [1− λ1i]x′i = 0, (68)

−λ1i + λ2i ≤ 0, [−λ1i + λ2i]x
′
j = 0, (69)

θi(1−2δp+δ)
g′(1−δp) + δ(p+δ−2δp)

1−δp
∂Vi
∂g′
− λ1i + λ2i

[
θj

g′(1−δp) + δ(1−p)
1−δp

∂Vj
∂g′

]
≤ 0, (70)[

θi(1−2δp+δ)
g′(1−δp) + δ(p+δ−2δp)

1−δp
∂Vi
∂g′
− λ1i + λ2i

[
θj

g′(1−δp) + δ(1−p)
1−δp

∂Vj
∂g′

]]
g′ = 0, (71)

1− x′i − x′j − g′ ≥ 0 [1− x′i − x′j − g′]λ1i = 0, (72)
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x′j +
θj

1−δp ln(g′) + δ(1−p)
1−δp Vj(g

′)−Kj(g) ≥ 0, (73)[
x′j +

θj
1−δp ln(g′) + δ(1−p)

1−δp Vj(g
′)−Kj(g)

]
λ2i = 0. (74)

By Claim 8, x′j = 0. By (68) λ1i > 0, and so the feasibility constraint (72) holds with

equality. By the envelope theorem (see Takayama (1985), Theorem 1.F.1), for i ∈ {H,L},
we have

∂Vi
∂g

= −λi2 ∂Kj

∂g
= −λi2

[
θj

g(1−δp) + δ(1−p)
1−δp

∂Vj
∂g

]
. (75)

Since this holds for i ∈ {H,L}, we have a system of two equations in two unknowns. Solving

gives

∂Vi
∂g

=
λ2i[λ2jθiδ(1−p)−θj(1−δp)]
g[(1−δp)2−λ2iλ2jδ2(1−p)2] , (76)

for i, j ∈ {H,L} with j 6= i.

Since VH and VL are differentiable in an open set containing g, it must be the case that

g ∈ (0, 1). Since g ∈ Gs, this in turn implies that g′ = g ∈ (0, 1). From g′ > 0, it follows that

(70) must hold with equality for i, j ∈ {H,L} and j 6= i. From g′ < 1, it follows that x′i > 0,

and hence λ1i = 1 for i ∈ {H,L}. Substituting λ1i and (76) into (70), and solving the two

equations (given by (70) for i ∈ {H,L}) for g′ and λ2H in terms of λ2L, we obtain

g′ = (λ2LθH+θL)(1+δ−2δp)
1−δp+λ2Lδ(1−p)

, (77)

and

λ2H = (θH−θL)(1−δp)−λ2LθH(1−δ)
λ2Lδ(θH−θL)(1−p)−θL(1−δ)

. (78)

Consider the low-polarization case in which θH
θL
≤ 1−δp

δ(1−p) . Note that δ(θH − θL)(1 − p) −
θL(1− δ) ≤ 0. Since λ2L ≤ 1 by (69), it follows that the denominator of (78) is nonpositive.

Together with the necessary condition that λ2H ≥ 0, this implies

λ2L ≥ (θH−θL)(1−δp)
θH(1−δ) .

Thus, if θH
θL
≤ 1−δp

δ(1−p) , we have λ2L ∈ [ (θH−θL)(1−δp)
θH(1−δ) , 1]. Since the right-hand side of (77) is

increasing in λ2L, the bounds on λ2L we just found implies that g = g′ ∈ [θ∗H , θH + θL].

Next consider the high-polarization case in which θH
θL
≥ 1−δp

δ(1−p) . Note that (θH−θL)(1−δp)
θH(1−δ) ≥ 1.

Since λ2H ≥ 0, the numerator and the denominator of (78) have the same sign. If they are

both nonpositive, then
(θH−θL)(1−δp)

θH(1−δ) ≤ λ2L.

Since λ2L ≤ 1 by (69), this is only possible when λ2L = 1. If instead both the numerator and

the denominator of (78) are nonnegative, then λ2H ≤ 1 implies that

(θH − θL)(1− δp)− λ2LθH(1− δ) ≤ λ2Lδ(θH − θL)(1− p)− θL(1− δ).
Since θH ≥ θL, δ < 1 and λ2L ≤ 1, this is only possible if λ2L = 1. Thus, in the high-

polarization case, λ2L = 1. Substituting in (77), we obtain g′ = g = θH + θL.
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10.7 Proof of Proposition 7

The derivative of θ∗H with respect to p is
∂θ∗H
∂p

= − θHδ(1−δ)
(1−δp)2 ≤ 0.

The derivative of θ∗H with respect to δ is
∂θ∗H
∂δ

= θHδ(1−p)
(1−δp)2 ≥ 0.

10.8 Proof of Proposition 8

If public good spending is discretionary, then party i’s expected steady state payoff is

1
2(1−δ) [(1− θi) + θi ln(θi)] + 1

2(1−δ) [θi ln(θj)] (79)

If public good spending is mandatory, then party i’s expected steady state payoff is

1
2(1−δ) [(1− g

s) + θi ln(gs)] + 1
2(1−δ) [θi ln(gs)] (80)

where gs ∈ [g∗H , θH + θL].

To show that party i is better off when public spending is mandatory, we only need to

show that (80) is higher than (79). After rearranging terms, it becomes

2θi ln(gs)− gs ≥ θi ln(θiθj)− θi (81)

Consider first i = H. Let k(x) = 2θH ln(x) − x. Since k′(x) = 2θH
x
− 1 > 0 if x < 2θH ,

and gs ∈ max{θ∗H , θH + θL} < 2θH by Proposition 5, it follows that k(gs) > k(θH). That is,

2θH ln(gs)−gs > 2θH ln(θH)−θH . Since ln(θH)2 > ln(θLθH), it follows that 2θH ln(gs)−gs >
θH ln(θLθH)− θH .

Next consider i = L in the low-polarization case. Since the left-hand side of inequality

(81) is concave in gs, it follows that (81) holds for any gs ∈ [θ∗H , θH+θL] if it holds for gs = θ∗H
and for gs = θH + θL.

If gs = θ∗H = 1+δ−2δp
1−δp θH , then

2θL ln(gs)− gs − θL ln(θHθL) + θL = 2θL ln(θ∗H)− θ∗H − θL ln(θHθL) + θL,

which is increasing in θL. Let θL = δ(1−p)
1−δp θH . Then

2θL ln(θ∗H)− θ∗H − θL ln(θHθL) + θL = ln
(

(1+δ−2δp)2
δ(1−p)(1−δp)

)
δ(1−p)
1−δp θH − θH ,

and it is positive if ln
(

(1+δ−2δp)2
δ(1−p)(1−δp)

)
≥ 1−δp

δ(1−p) .

Similarly, if gs = θH + θL, then

2θL ln(gs)− gs − θL ln(θHθL) + θL = 2θL ln(θH + θL)− θL − θH − θL ln(θHθL) + θL

= 2θL ln(θH + θL)− θH − θL ln(θHθL),
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which is increasing in θL. Let θL = δ(1−p)
1−δp θH . Then

2θL ln(θH + θL)− θH − θL ln(θHθL) = ln
(

(1+δ−2δp)2
δ(1−p)(1−δp)

)
δ(1−p)
1−δp θH − θH ,

and it is positive if ln( (1+δ−2δp)2
δ(1−p)(1−δp)) ≥

1−δp
δ(1−p) . To summarize, inequality (81) holds for i = L if

ln( (1+δ−2δp)2
δ(1−p)(1−δp)) >

1−δp
δ(1−p) .

10.9 Illustration of parties’ proposal strategies for transfers
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Figure 8: χij(g) in low-polarization case
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Figure 9: χij(g) in high-polarization case
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