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Abstract

Auction models are convenient abstractions of informal price-formation

processes that arise in markets for assets or services. Existing models have

to be enriched to capture certain frictions that are salient in such informal

situations. In particular, bidder participation may be the outcome of costly

recruitment efforts, participation may be costly for the bidders as well, the

seller’s commitment abilities may be limited, and the seller’s private informa-

tion may be more consequential. This paper develops a model of auctions with

such frictions and derives some novel predictions. In particular, outcomes are

often ineffi cient, and the market sometimes unravels.

Much of the work on auction theory focuses on design aspects in situations in

which the seller has substantial commitment power and the potential bidders are

known and ready to participate (bidding or first acquiring information). These

assumptions are motivated by formally organized auctions, such as those held by

government agencies. However, auction models are also convenient abstractions of

less formal price formation processes that arise in markets for assets or services.1 In

such situations, the commitment ability of the seller may be limited, the recruitment
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1This view of auction models as abstractions of free-form price formation motivated some of

the earlier literature (Milgrom, 1979, and Wilson, 1977).
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of bidders may be a central issue, and the interaction may be affected by information

that the auctioneer has or is trying to learn.

These “design”and “markets”agendas differ not only in some of their assump-

tions but also in the bigger questions that they are addressing. The “markets”

agenda is interested in traditional economic questions concerning the effi ciency of

markets and how competition handles information asymmetries. It is not very in-

terested in design questions (such as identifying a mechanism that performs well by

some criteria); in fact, it might prefer to consider situations in which the fine details

of the design are unimportant.

This paper contributes to the “markets”agenda. It explores the role of four as-

pects of less formal auction scenarios: costly recruitment, costly bidder entry/information

acquisition, the seller’s inability to commit to the level of recruitment effort, and

bidders’inability to observe participation.

The model features a first-price auction with a random number of prospective

bidders, which is the realization of a Poisson distribution whose parameter is deter-

mined by the seller’s costly recruitment effort. A recruited prospective bidder decides

whether to participate. Participation may involve a cost, which can be due to in-

formation acquisition or other preparations. The bidders do not observe the seller’s

recruitment effort. We first look at the independent private-values version and

within it examine two scenarios. In the PO scenario (“participation-observable”),

bidders observe the number of participants before they bid. The unique equilibrium

for this scenario yields two related insights. First, it may involve a substantial ineffi -

ciency in the form of costly excessive recruitment effort, even when the cost per unit

effort is small. Second, it may result in no trade, even when the recruitment and

participation costs are low enough to have facilitated trade if seller commitment or

greater transparency were possible. In the alternative PU scenario (“participation -

unobservable”), the bidders do not observe the extent of participation in the auction.

The unobservability generates a new consideration– the seller’s incentive to secretly

reduce recruitment. This may give rise to multiple equilibria sustained by different

levels of fulfilled expectations. One of them is an equilibrium with no trade. This

equilibrium always exists and sometimes it is unique, even when the circumstances

seem favorable for trade (bidders bear no cost of entry and the seller’s recruitment

cost is not prohibitive). Thus, the auction collapses under circumstances that could

sustain beneficial trade in the presence of commitment or observable participation.
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Some interesting insights arise from comparing the two scenarios. First, if the

bidders’cost of entry/information acquisition is small enough not to constrain the

equilibria, then equilibrium participation and profit are higher in the PO scenario.

In particular, as explained above, the PO equilibrium may involve active trade, even

when no trade is the unique PU equilibrium outcome. In contrast, if the bidders’

costs are high enough to constrain the equilibrium, then the total recruitment cost

is larger and consequently profit and total surplus are lower in the PO than in

the PU scenario. In particular, when bidders’cost is large enough, the unique PO

equilibrium involves no trade, whereas, for small enough recruitment costs, the PU

scenario has an active-trade equilibrium.

In terms of payoffs and costs, the PO equilibrium is equivalent to the domi-

nant strategy equilibrium of the second-price auction format in either scenario (as

observability does not matter). Therefore, these insights also apply verbatim to a

comparison between the first-price and second-price auction formats. In the absence

of the frictions (lack of commitment, costly recruitment, and costly participation),

these two scenarios would be equivalent in terms of profit and surplus. In the pres-

ence of costs and absence of commitment power, they are not equivalent, and their

ranking depends on the recruitment and entry-cost conditions. Given our “informal

auctions” perspective, we think of the choice of the auction format not from the

design angle, but rather as a proxy for some mix of bidding and bargaining that

arises naturally in these situations. However, our results comparing these two for-

mats bring out elements that will be present to various degrees in hybrid formats,

and they may also shed light on circumstances in which one format or the other is

more likely to emerge.

We then look at the PO scenario with the added feature of bidders’uncertainty

over the seller’s recruitment cost. This is a specific example representing the broader

issue of how the seller’s private information may be incorporated into behavior and

affect incentives and equilibrium outcomes. Such information may be more relevant

for the informal environments that we have in mind than, say, for a government-

sponsored auction. One insight that arises here is that the market may unravel

almost completely: Almost all seller types may stay out of the market despite the

fact that, if their type were commonly known, each of them would be active in equi-

librium. Finally, we consider a number of extensions that illustrate the robustness

of our qualitative findings. In particular, we consider the case in which, before en-
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tering, bidders know their valuation as well as the seller’s optimal entry fee/subsidy

and reserve price.

Although the related literature is vast, some of the issues addressed by this

paper may have not been extensively explored. In particular, we are not aware of

references that contain the specific insights described above. Here are some of the

most immediately related references. In Levin and Smith (1994), bidders’ costly

entry is also an important element, but that paper focuses on traditional questions

of auction design, which are orthogonal to our work. Bulow and Klemperer (1996)

compare auctions to negotiations when entry is costly, but they do not share our

focus on recruitment efforts and lack of commitment. Szech (2011) considers the

optimal costly recruitment of bidders by a seller who can commit. In Lauermann

and Wolinsky (2017, 2021) we also present auction models in which the seller incurs

recruitment costs. However, we consider there a common-values environment and

explore the extent of information aggregation by price when there is a privately

informed seller.

1 The PO auction: Observable participation

1.1 The model

One seller owns an indivisible object that has value 0 to her. The seller makes

recruitment effort γ ≥ 0, resulting in a random number of prospective bidders that

is Poisson distributed with mean γ; i.e., the probability of her contacting t bidders

is γt

t!
e−γ. The cost of effort γ is γs, for some s > 0.

The prospective bidders are ex-ante symmetric. A prospective bidder i who de-

cides to participate incurs a cost c ≥ 0. Afterward, the bidder observes his own

value vi for the good and the total number n of bidders who chose to enter the auc-

tion (including i himself). The vi are private values, independently and identically

distributed with a cumulative distribution function (c.d.f.) G, with support [0, 1],

a continuous density g, and increasing “virtual values,”v − 1−G(v)
g(v)

. The bidders do

not observe γ.

Finally, the participating bidders submit bids. The highest bidder wins and pays

his own bid.

When an auction ends with winning bid p, the payoff is p− γs is for the seller,

4



vi− p− c for the winning bidder i, −c for a participating bidder who lost, and 0 for

a contacted bidder who declined entry.

1.2 Interaction: strategies and equilibrium

The seller’s strategy is the recruitment effort γ ≥ 0. Bidder i’s strategy is (qi, βi),

where qi ∈ [0, 1] is the entry probability and βi : [0, 1]×{1, 2, ...} → [0, 1] describes i’s

bid as a function of his information (vi, n)– that is, i’s private value and the number

of participating bidders. Bidder i’s belief concerning the seller’s effort, conditional

on being contacted (but before observing (vi, n)), is a probability distribution µi
with finite support2 in [0,∞). Thus, µi(γ) is the probability that bidder i assigns

to the possibility that the seller chose effort γ.

We study symmetric behavior in which all bidders employ the same strategy

(q, β) and hold the same belief µ. An equilibrium consists of γ∗, q∗, and β∗, such

that the following hold:

1. γ∗ maximizes the seller’s expected payoff given q∗ and β∗.

2. There exists a belief µ such that

• q∗ and β∗ maximize each bidder’s payoff, given µ and the other bidders’
strategy (q∗, β∗);

• if γ∗ > 0, then µ(γ∗) = 1, i.e., the belief is confirmed on the path;

• if γ∗ = 0, then every γ̂ in the support of µ maximizes the seller’s payoff

given q∗ and β∗.

Thus, by definition, the equilibrium is symmetric and allows only pure recruit-

ment and bidding strategies; mixing is allowed only in the bidders’entry decisions,

q ∈ [0, 1].

Off-path beliefs arise only when γ∗ = 0, but their role is not negligible, since

this is an important case of extreme market failure. The last bullet point in the

equilibrium definition imposes a refinement on the off-path beliefs, which allows us to

rule out no-trade equilibria that rely on unfounded beliefs. This will be discussed in

Subsection 6.5, where we present alternative ways to obtain the needed refinement.3

2Finiteness will turn out to involve no loss of generality in this model.
3We chose this approach for the main text since it is easy to state and does not require any

special notation or modification of the model.
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Notice that the refinement does not rule out µ(0) > 0. This is the case in which

a bidder is contacted off-path despite the fact that the seller’s profit-maximizing

effort is 0. Essentially, the bidder believes that the seller only “trembled”slightly

and that this bidder is most likely the only one to have been contacted.4

The random number of actual participants in the auction is Poisson distributed

with mean

λ := qγ.

Given the Poisson distribution, λ is not just the expected number of participants

from an outsider’s perspective, but it is also the expected number of competitors of

a participating bidder (Myerson, 1998).

For convenience we will mostly use λ (instead of γ). Thus, bidders’belief µ will

be over λ and the equilibrium will be expressed in terms of λ∗ := q∗γ∗.

2 Equilibrium analysis for the PO scenario

2.1 Solving backward

The interaction in the PO scenario unfolds in three stages– recruitment, bidders’

entry, bidding– and the equilibrium can be solved for backward.

Stage 3: Bidding. Once the number of participants n is realized, the ensuing
auction is a standard symmetric first-price auction (FPA) with independent private

values drawn from the c.d.f. G. Such an auction has a unique symmetric equilibrium

(see, e.g., Krishna 2010),

βFPA (v, n) = v −
∫ v

0

[
G (y)

G (v)

]n−1

dy, (1)

and so β∗ = βFPA is the bidding strategy in every equilibrium.

Stage 2: Bidders’ entry. Let Uo(λ) be the bidders’ ex-ante expected payoff

(gross of the cost of entry), given a Poisson distributed number of participating

bidders with mean λ who use βFPA. The subscript o here and later indicates that

participation is “observable.”

The following claim presents the properties of Uo that are used in the equilibrium

4This point is also discussed in Subsection 6.5.
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analysis. Its proof is in the appendix. (Throughout, all the proofs that do not

appear in the text immediately following the statement of a formal result are in the

appendix.)

Claim 1 Uo is strictly decreasing and continuous, U0 (0) = E [v], and limλ→∞ U0 (λ) =

0.

Given bidders’belief µ concerning λ– a probability distribution with finite sup-

port in [0,∞)5– their optimal entry decision q satisfies

Eµ[Uo(λ̂)] > c ⇒ q = 1,

Eµ[Uo(λ̂)] < c ⇒ q = 0.
(2)

The case of c ≥ U0 (0) is uninteresting, since it means that the bidder stays out.

We therefore assume from now on that

0 ≤ c < U0 (0) .

Since U0 is continuous and strictly decreasing to 0, the equation Uo (λ) = c has a

unique solution if c > 0. We denote this solution by λ̄c; that is, for c > 0,

Uo(λ
c
) = c. (3)

This is the bidders’break-even participation level: given λ, a bidder’s expected

payoff from entering is nonnegative if and only if λ ≤ λ
c
. For c = 0, we set λ̄c =∞.

The upper bar in λ
c
will serve as a reminder that this is the maximal scale acceptable

to bidders.

It follows that, in any equilibrium,

λ∗ ≤ λ
c
, (4)

and, if λ∗ ∈ (0, λ
c
), then q∗ = 1.

Stage 1: Recruitment. Given q and β, the seller’s problem is to choose recruit-

ment effort γ to maximize profit. The choice of effort γ at cost s is equivalent to the

5Previously, we used µ to denote belief over γ. From here on, it denotes beliefs over λ.
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λ

Uo(λ)

b

λ
c

c

Figure 1: The function Uo(λ).

choice of λ = qγ at cost s/q. Letting Ro (λ) be the seller’s expected revenue given

the participation level λ and βFPA, the profit as a function of λ and q > 0 is

Πo(λ, q) = Ro(λ)− λs
q
,

with Πo(0, 0) = 0 and Πo(λ, 0) = −∞ for λ > 0.

In any equilibrium, λ∗ ∈ arg max Πo(λ, q
∗). The following discussion describes

the solution to this maximization problem.

In Figure 2, Πo(λ, q) is captured by the vertical difference between the curves.

(Although we provide analytical arguments, the reader might find it easier to just

follow the graphical arguments, which capture essentially everything.)

λ

Πo(λ, q)

Ro(λ)

λs
q

Figure 2: Revenue, cost, and profit.

The revenue Ro(λ) is an increasing function, since a larger λ induces more ag-
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gressive bidding and higher maximal values. Owing to the former effect, Ro is not

concave.

Figure 3 depicts properties of Ro that are relevant for solving the seller’s problem.

These properties are also established analytically by Claim 3 below.

λ

R′
o(λ)

so

λo λo(
s
q
)

s
q

Ro(λ)
λ

Figure 3: Marginal revenue, average revenue, and marginal cost.

The figure includes some notation that is used repeatedly:

s̄o := max
λ

Ro (λ)

λ
, (5)

λo(z) := largest λ s.t. R′o(λ) = z for z ≤ so,

λo := λo(s̄o).

Observe that

R′o(λo) =
Ro (λo)

λo
= s̄o.

These properties of Ro (λ) imply the form of the solution to the maximization

of Πo(λ, q) summarized by the following claim. In particular, the claim shows that

λo is the minimal positive profit-maximizing scale. (The lower bar in λo serves as a

reminder of that.)
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Claim 2 Πo(λ, q) is maximized either at λ = 0 or at some λ ≥ λo:

s

q
> s̄o ⇒ arg max Πo(·, q) = 0, (6)

s

q
< s̄o ⇒ arg max Πo(·, q) = λo(

s

q
) > λo,

s

q
= s̄o ⇒ arg max Πo(·, q) = {0, λo}.

This claim follows immediately from the claim below, which summarizes the

observations depicted in Figure 3.

Claim 3 Revenue and optimality.

1. Ro (λ) is strictly increasing, Ro (0) = 0, and limλ→∞Ro (λ) = 1.

2. Ro (λ) is continuously differentiable, R′o (0) = 0, R′o(λ) → 0 as λ → ∞, and
R′o is single-peaked.

3. Ro(λ)
λ

is single-peaked; at its peak, Ro(λ)
λ

= R′o (λ).

Thus, in any equilibrium, λ∗ = 0 or λ∗ = λo(
s
q∗ ) depending on whether

s
q∗ T s̄o.

2.2 Equilibrium

Solving backwards through the three stages above results in the following “reduced

form”equilibrium definition. An equilibrium consists of λ∗ and q∗ that satisfy one

of the following:

1. λ∗ = λo(s) ∈ [λo, λ
c
) and q∗ = 1.

2. λ∗ = λ
c
and q∗ ∈ (0, 1], with λo( s

q∗ ) = λ
c
.

3. λ∗ = 0 and q∗ is a best response6 to µ, where supp(µ) ⊂ arg maxλ Πo(·, q∗).

Thus, if an equilibrium λ∗ is positive, it must satisfy λo ≤ λ∗ ≤ λ
c
. That is, λ∗

is between the minimal profit-maximizing scale and the maximal acceptable scale

for the bidders.

The essential information about the equilibrium is depicted in Figures 4 and 5

below and also stated in the following propositions.
6Thus, it satisfies (2).
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Proposition 1 An equilibrium exists and it is unique for almost all (s, c).

Proposition 1 follows from the characterization results of Propositions 2 and 3

below.

Proposition 2 If s < so and λ
c
> λo, then the unique equilibrium outcome has

λ∗ = min{λc, λo(s)}.

R′
o(λ)

so

λo λ
c

sL
q∗
u,L

sL

b

sM

λ∗
M

b

Figure 4: PO scenario with Trade.

Figure 4 illustrates R′o and the two cutoffs, λo and λ
c
. It shows the two types of

equilibria with trade, each obtaining for a different level of s:

• At sM , the unique equilibrium outcome is with trade, λ∗M = λo(sM) ∈ [λo, λ
c
].

• At sL, the unique equilibrium outcome is with trade, λ∗L = λ
c
, and q∗L satisfies

λo(
sL
q∗L

) = λ
c
. In this case, λo(sL) > λ

c
.

Proposition 3 If s > so or λ
c
< λo, then λ

∗ = 0 (no trade) is the unique equilib-

rium outcome.

The case s > so has already been illustrated in Figure 4. At sH , the unique

equilibrium outcome is λ∗H = 0 since R′o (λ) < sH for all λ ≥ λo.

The case λ
c
< λo is illustrated in Figure 5. In this case, no trade takes place

even if s is low, as is sL in the figure.

Entry is beneficial for bidders at λ < λ
c
, and, when s is low, such λ would be

profitable for the seller as well. The problem is that the seller cannot commit to
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R′
o(λ)

so

λoλ
c

sH b

sL b

Figure 5: PO scenario– no trade when λ
c
< λo.

such low λ. She also cannot be incentivized through reduced bidders’entry (q < 1),

which would raise the marginal recruitment cost s/q. If s/q > so, the profit is

maximized at λ = 0; if s/q ≤ so, the profit is maximized at λ ≥ λo > λ
c
(and at

both λo and 0 if s/q = so). In this case, the market will be closed even in the face

of substantial potential gains from trade.

Finally, if either one of the strict inequalities in Proposition 2 is replaced with

an equality, i.e., if s = so or λ
c

= λo, then both λ
∗ = 0 and λ∗ = λo are equilibrium

outcomes. This also holds if both of the inequalities in Proposition 3 are replaced

by equalities, i.e., if s = so and λ
c

= λo.

2.3 A qualitative insight

For the following corollary, we include s as an argument in the seller’s payoff and

write Πo(λ, q, s).

Corollary 1 Consider a sequence (sk)
∞
k=1 with sk → 0, and let (λ∗k, q

∗
k) be the cor-

responding equilibrium outcomes.

1. If c = 0, then q∗k = 1 for all sk, λ
∗
k →∞, and skλ∗k → 0.

2. If c > 0 and λ
c ≥ λo, then, for all sk < R′o(λ

c
),

λ∗k = λ
c
, sk

q∗k
λ∗k is a constant, and Πo(λ

∗
k, q
∗
k, sk) is a constant.

7

7These constants are λ
c
R′o

(
λ
c
)
and Ro

(
λ
c
)
− λcR′o

(
λ
c
)
, respectively.
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Corollary 1 implies that, for c > 0 (but not prohibitively large) and all small

enough s, total recruitment costs are constant and bounded away from zero.

To be willing to bear the cost of entry, bidders must believe that the seller is not

recruiting too aggressively. This is achieved in equilibrium when bidders are suffi -

ciently reluctant to enter (q∗ is suffi ciently small) so that the marginal recruitment

cost is high enough to induce the seller to stop at λ
c
.

In contrast, total recruitment cost becomes negligible when s is small, either

when c = 0 or when c > 0 and the seller can commit to some recruitment effort γ.

No matter how large such commitment γ is, q will adjust to achieve λ
c
, but sγ → 0

as s → 0. Thus, ineffi cient costly recruitment effort is the consequence of a lack of

commitment and costly bidder participation.

2.4 Other auction formats and bargaining

In the same environment, consider the second-price auction (SPA) format when its

dominant strategy equilibrium is played.

Claim 4 The expected payoffs and the equilibrium magnitudes of λ∗ and q∗ are the

same as they would be in the dominant strategy equilibrium of the SPA format.

This result follows immediately from revenue equivalence. Therefore, the same

insights and conclusions hold.8

More generally, the characterization of equilibrium relies only on the properties

of the reduced form payoffs Uo (·) and Ro (·) derived in the Claims 1 and 3. Thus,
the characterization extends from the FPA and SPA to any auction or “bargaining”

scenario that implies these properties for the expected payoffs and revenue.

3 The PU auction: Unobservable participation

The PU scenario is the independent, private-values model considered so far, except

that here bidders cannot observe the number of other participants at any stage
(before or after entry). Besides being interesting in its own right, this scenario will

8The distribution of the winning bid itself would be different, but this does not affect the results
we look at.
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help us distinguish the role of commitment from the role of observability. We index

the magnitudes for this scenario with the subscript u (for “unobservable”).

The equilibrium definition presented in Subsection 1.2 above remains the same,

and we continue to work in terms of λ = γq.

3.1 Solving backward (PU scenario)

As before, the interaction unfolds in three stages– recruitment, bidders’entry, bidding–

and the equilibrium can be solved for backward.

Stage 3: Bidding. Since bidders do not observe the actual participation, this is a
first-price auction (FPA) with a Poisson (λ̂) distributed random number of bidders,

where λ̂ is the bidders’point belief9 concerning the expected participation. This

auction has a unique symmetric bidding equilibrium, denoted by βλ̂ : [0, 1]→ [0, 1].10

Claim 5 Given belief λ̂, the unique symmetric equilibrium bidding strategy is

βλ̂ (v) = v −
∫ v

0

e−λ̂(G(v)−G(x))dx. (7)

For λ̂ > 0, the bidding strategy βλ̂ is strictly increasing in v and differentiable;

for λ̂ = 0, we have βλ̂(v) = 0.

In an equilibrium with participation λ∗, the bidders’ equilibrium strategy is

β∗ = βλ∗.

Stage 2: Bidders’entry. Let Uu(λ) be a contacted bidder’s ex-ante expected

payoff, given λ and βλ. Given bidders’point belief λ̂, bidders’entry decision q is

optimal if
Uu(λ̂) > c ⇒ q = 1,

Uu(λ̂) < c ⇒ q = 0.
(8)

Claim 6 Uu(λ) is the same as Uo(λ) of the previous PO scenario.

9As in the PO scenario, we could describe beliefs as a distribution µ. But in the PU scenario
we only need point beliefs, in the sense that we would not get any more equilibrium outcomes by
allowing for non-degenerate beliefs off the equilibrium path. Therefore, we focus on point beliefs
from the start.
10This result is proven as a straightforward implication of payoff equivalence, just as in the

analysis of other auction scenarios with an uncertain numbers of bidders; see, e.g., Krishna (2009,
Section 3.2.2).
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Since βλ is monotonic, this claim is a consequence of payoff-equivalence and does

not require a proof. Therefore, Uu is decreasing to 0 and continuous, and the break-

even participation level λ
c
(with Uu(λ

c
) = c) is also the same as in the PO scenario.

Thus, as above, in equilibrium, λ∗ ≤ λ
c
, and, if the inequality is strict, then q∗ = 1.

Stage 1: Recruitment. Let Ru (λ, β) be the seller’s expected revenue given par-

ticipation level λ and bidding strategy β. The seller’s expected payoff Πu(λ, β, q)

is

Πu(λ, β, q) = Ru(λ, β)− λs
q
,

for λ, q > 0. It is 0 for λ = q = 0, and it is −∞ for q = 0 and λ > 0.

In any equilibrium, λ∗ ∈ arg maxλ Πu(λ, βλ∗ , q
∗). It is shown below (Claim 7)

thatΠu(λ, βλ̂, q) is concave and differentiable in λ (for fixed λ̂). Therefore, any λ that

satisfies the first-order condition (with respect to λ) is a maximizer of Πu(λ, βλ̂, q).

3.2 Equilibrium (PU scenario)

Let

ξ (λ) :=
∂

∂λ
Ru(λ, βλ̂)λ̂=λ.

This is the marginal revenue with respect to λ at a point where λ coincides with

the given expectation λ̂.

Proposition 4 The strategies λ, βλ, and q constitute an equilibrium if and only if

q satisfies (8) and
s

q
≥ ξ (λ) , (9)

with equality holding for λ > 0.

Proof. The proof uses the following claim, which is proved in the appendix.

Claim 7 (i) Ru(λ, βλ̂) is twice differentiable (in λ and λ̂), and for λ̂ > 0 it is

strictly concave in λ.

(ii) The function ξ (λ) is continuous, ξ (0) = 0, and limλ→∞ ξ (λ) = 0.

Since, for λ̂ > 0, Ru (λ, βλ̂) is strictly concave and differentiable in λ, so is

Πu(λ, βλ̂, q). Therefore, the first-order condition
∂
∂λ
Ru(λ, βλ̂) ≤ s

q
(with equality at

λ > 0) is both, necessary and suffi cient. If λ̂ = 0, then Ru(λ, βλ̂) = 0 for all λ, and

so λ = 0 is the unique best response, with ∂
∂λ
Ru(λ, βλ̂) = 0 < s

q
. �
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The essential information about the equilibrium is depicted in the following two

figures and stated formally in Corollary 2. Let

su := max
λ

ξ (λ) ,

and, for 0 < z ≤ s̄u, let λu(z) and λu(z) be the maximal and minimal values of λ

satisfying ξ (λ) = z.

λ

ξ(λ)

su

sH

λu(sH) λu(sH) λ
c

sL
q∗
sL

λu(sL) λu(sL)

Figure 6: PU scenario with small c.

Figure 6 depicts the equilibria (marked with dots) for two s values, sH > sL, and

small c (which translates to a relatively large λ
c
). For each of the s values there are

three equilibria:

• For sH , the equilibria are at λ∗ = 0, λ∗ = λu(sH), and λ∗ = λu(sH).

• For sL, the equilibria are at λ∗ = 0, λ∗ = λu(sL), and λ∗ = λ
c
.

Thus, c does not constrain the equilibria for sH . It constrains only the largest

equilibrium for sL, in which q∗ adjusts to achieve λu(sL/q∗) = λ
c
. In the other

equilibria, q∗ = 1.

The case of a larger c– implying a smaller λ
c
– is depicted in Figure 7. In this

case, for sH there is a unique equilibrium with λ∗ = 0, while for sL there are still

three equilibria as in the case of small c. The key difference is that λ
c
< λu(sH),

precluding trade in equilibrium with sH .

More generally, if c and s are such that the market is not closed, then either c is

relatively small so as not to constrain the equilibria, implying that in all equilibria,
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Figure 7: PU scenario with large c.

λ∗ ≤ λ
c
and q∗ = 1; or c is suffi ciently large so the largest equilibrium λ∗ is λ

c
and

the corresponding q∗ < 1. In particular, given c, for small enough s there is always

an equilibrium with λ∗ = λ
c
and q∗ < 1.

Corollary 2 (to Proposition 4)11 summarizes the above observations.

Corollary 2 (i) For all s and c, there is a no-trade equilibrium with λ∗ = 0. If

s > su or λ
c
< λu(s), this is the unique equilibrium outcome.

(ii) If s < su and λ
c
> λu(s), there are also (possibly multiple) equilibria

with trade: λ∗ > 0 is an equilibrium outcome if and only if either

ξ (λ∗) = s and λ∗ < λ
c
,

or there is some q∗ ∈ (0, 1] such that

λ∗ = λ
c

and ξ
(
λ
c
)

=
s

q∗
.

Note that we have not established that ξ is single-peaked.12 Therefore, the

possibility of more equilibria than the three shown in the figure is not ruled out.

The bidders’inability to observe participation gives rise to two apparently con-

flicting phenomena. First, the no-trade equilibrium always exists, even when s and

11Strictly speaking, this is just a restatement of Proposition 4, with the condition (8) on the
optimality of q∗ expressed in terms of λ

c
.

12We have established analytically that ξ is continuous and that ξ (0) = 0, ξ (λ) > 0 for λ > 0,
and limλ→∞ ξ (λ) = 0.
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c are low.13 This equilibrium is sustained because bidders expect no competition

and therefore intend to bid 0, making recruitment unprofitable. In the absence of

the ability to commit to the level of recruitment, the seller cannot break out of

this equilibrium. This logic also explains the low-trade equilibria (e.g., at λu(sL)).

When s > su, this effect is strong enough to leave no trade as the unique equilibrium

outcome, even if there are potential gains from trade.

Second, for any c < U(0) (which is assumed throughout), if s is suffi ciently small,

there still exists an equilibrium with trade. If bidders could observe participation,

the low λ needed to induce bidders with high c to enter could not be sustained in

equilibrium, since the seller would have an incentive to recruit more aggressively.

However, here the bidders’expectations of low participation induce low bids and

discourage aggressive recruiting.

Let λ∗u and q∗u denote the equilibrium values with the largest λ (for a given

s and c). We are interested in this equilibrium mainly as a useful reference for

comparing the two scenarios. However, when c is small, so that λ
c
is not binding,

this equilibrium is also distinguished by being the seller’s maximal-profit equilibrium

and by being pseudo-stable in the sense that the best response to a locally displaced

λ points in the direction of the equilibrium.14

Proposition 5 Suppose s ≤ su.

1. If λ
c
< λu(s), then λ

∗
u = 0.

2. If λ
c ∈ [λu(s), λu(s)], then λ

∗
u = λ

c
and s

q∗u
= ξ

(
λ
c
)
.

3. If λ
c
> λu(s), then λ∗u = λu(s) and q∗u = 1, and this is the seller’s most

profitable equilibrium.

4. If c = 0 (i.e., λ
c

=∞), then s→ 0 implies λ∗u →∞ and sλ∗u → 0.

Parts 1—3 follow immediately from Corollary 2 and hence do not require a proof.

Part 4 is also immediate. First, λ∗u → ∞ as s → 0 since λ∗u = λu(s) and, by Claim

7, λu(s)→∞. Second, an argument analogous to that of Corollary 1 implies that,
when s is small enough, the seller can extract the whole surplus with a possibly

13As opposed to only when s or c is too high, as is the case in the PO scenario.
14We do not place much weight on this observation, since when λ

c
is binding the naive pseudo-

stability argument is less clear.
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suboptimal λ = 1/
√
s, and hence the equilibrium sλ∗u may not be bounded away

from 0.

A qualitative insight. Corollary 1 of the PO scenario is valid for the present

scenario as well, and so is the insight that, for c > 0 (but not prohibitively large)

and all small enough s, the total recruitment cost is constant; that is,

s

q∗u
λ∗u = ξ

(
λ
c
)
λ
c
= constant,

which follows from the fact that s
q∗u

= ξ(λ
c
) for all small enough s.

4 Comparison of the PO and PU scenarios

4.1 Ranking reversals

With observable participation (the PO scenario), the incentive to recruit is driven

by two considerations: increasing the likelihood that high-value bidders will appear

and inducing more aggressive bidding. With unobservable participation (the PU

scenario), only the former consideration is present. This difference is reflected by

the stronger marginal incentive to recruit when participation is observable. It is

translated to ranking reversals: With “small”c and "not too small”s, the PO sce-

nario generates higher participation and profit than the PU scenario; these relations

are reversed with “large”c or “small”s.

Figure 8 combines Figures 4 and 6. Recall that s̄o and su are the maximal values

of s for which an equilibrium with positive λ exists for the PO and the PU scenario,

respectively. The following claim states the essential features depicted in the figure.

Claim 8 (i) R′o(λ) > ξ (λ), for all λ > 0; (ii) s̄o > su.

Figure 8 depicts the case of small c and medium/large s. It shows λ∗o and λ
∗
u

(the unique maximal equilibrium values of λ for the PO15 and the PU scenario,

respectively) for two recruitment cost levels, sH > sM . At sH , there is trade only

in the PO scenario: λ∗o,H > λ∗u,H = 0. At sM , there is trade in both scenarios,

λ∗o,M > λ∗u,M > 0, and the participation is unconstrained by c. In both cases, the

profit in the PO scenario is higher. Graphically, the profit in each scenario is the

15Note that, for this comparison, we add a subscript o to the unique λ∗ of the PO scenario.
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Figure 8: Comparison with small c and medium/large s.

area between the R′o(λ) curve and the corresponding horizontal s line. Thus, the

conclusion about the profit is evident from inspection of the figure.

Figure 9 depicts the case of small c and small s. At sL, the participation level is

constrained by c in both scenarios, yielding the same equilibrium participation λ
c
but

with higher effective recruitment costs in the PO scenario, sL
q∗o,L

> sL
q∗u,L
. Obviously,

the profit in the PO scenario is lower in this case.

R′
o(λ)

so

λo

bsL
q∗o,L

ξ(λ)

su

b

λ
c

sL
q∗u,L
sL

Figure 9: Comparison with small c and small s.

Figure 10 depicts the remaining case of large c. In this case, trade takes place

only in the PU scenario, λ∗u = λ
c
> 0 = λ∗o, and the PU profit is of course higher.

Observe that the same levels of participation and profits will prevail for any lower

s as well.
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Figure 10: Comparison with large c.

The observations we have made with the aid of these three diagrams are stated

formally in claims 9 and 10 below.

The main takeaway is that there is ranking reversal of profit and partici-
pation.

• If s is non-prohibitive for the PO scenario (s < so), then for c small enough,

both participation and profit are higher in the PO scenario.

• If s is non-prohibitive for the PU scenario (s < su), then for c large enough,

both participation and profit are higher in the PU scenario.

This reversal does not conflict with the logic of revenue equivalence. If λ is the

same in both scenarios and λ̂ = λ (in the PU scenario), then by revenue equivalence,

the revenue is the same in both scenarios and, if q is also the same, so is the profit.

This is seen in the diagram, where the profit associated with λ and q in both scenarios

(given that λ̂ = λ in the PU case) corresponds to the area between the R′o(λ) curve

and the s/q line over the interval [0, λ].

The reversal is due to the significant role of the observability of participation.

Observability is often assumed automatically in auction models, although it is not

so obvious in less formal situations. When combined with costly recruitment and

participation, the observability has important consequences.

In the presence of recruiting costs, the unobservability of participation retards

the profitability of recruiting and, in the extreme, may result in no trade. Consider

the case of c = 0, so that bidders’entry considerations are absent (i.e., q∗ = 1 in
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all equilibria). In this case, the profit in both scenarios is maximized at λ∗o (where

R′o(λ
∗
o) = s). As just mentioned above, if the seller in the PU scenario could commit

to λ∗o, she would get the same profit. However, in the absence of commitment, this

is not sustainable in the PU scenario. The seller would prefer to secretly reduce

λ. Bidders anticipating this would plan to bid less aggressively than they would if

they expected λ∗o, thus augmenting the seller’s incentive to secretly reduce λ even

further. When so > s > su, these self-reinforcing considerations drive the maximal

PU equilibrium participation λ∗u to 0– complete “unraveling”of the market, even

though s < so implies a positive λ
∗
o. When s < su, then λ

∗
u settles at a positive level,

albeit lower than λ∗o. In either case, this implies lower profit in the PU scenario.
16

When c > 0, the retarding effect of unobservable participation may help sustain

trade by insuring bidders against excessive recruitment that will make their entry

unprofitable.

The mix of these two effects, which depend on the relative sizes of s and c,

explains the “reversal.”

The following two claims are just formal summaries of the above observations

(and hence do not require proof). Recall the seller’s profit functions Πo(λ, q) =

Ro(λ)− λ s
q
and Πu(λ, βλ̂, q) = Ru(λ, βλ̂)− λ sq .

Claim 9 (Higher participation and profit in the PO equilibrium.) Suppose
λ
c
> λo.

1. If s̄o > s > su, then λ
∗
o > λ∗u = 0 and Πo(λ

∗
o, q
∗
o) > Πu(λ

∗
u, βλ∗u , q

∗
u) = 0.

2. If su > s > R′o(λ
c
), then λ∗o > λ∗u > 0 and Πo(λ

∗
o, q
∗
o) > Πu(λ

∗
u, βλ∗u , q

∗
u).

Claim 10 (Higher participation and profit in the PU equilibrium.)

1. If λ
c
< λo, then λ

∗
u ≥ λ∗o = 0 and Πu(λ

∗
u, βλ∗u , q

∗
u) ≥ Πo(λ

∗
o, q
∗
o) = 0, with strict

inequalities for s < su.

2. If λ
c ≥ λo and s < ξ(λ

c
), then λ∗o = λ∗u = λ

c
and Πu(λ

∗
u, βλ∗u , q

∗
u) > Πo(λ

∗
o, q
∗
o).

16A slightly different explanation appeals to the seller’s revealed preference. By choosing λ∗u in
the PO scenario, the seller could secure the PU equilibrium profit. Since Πo(λ, q) is increasing in
λ at λ = λ∗u (as evident in the diagram from R′o(λ

∗
u) > s), the conclusion follows.
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Remark. Claims 9 and 10 do not address the intermediate range of c where λ
c
> λo

and s ∈ (ξ(λ
c
), R′o(λ

c
)). We omitted this range to avoid dealing with details that

might complicate the presentation, though they do not affect the general message.

Over this range, λ
c
constrains participation only in the PO scenario. For s near

the bottom of the range, the outcomes are close to those of Part 2 of Claim 10

(λ∗o = λ
c
and λ∗u just below it), and the PU equilibrium is more profitable. For s

near the top, the outcomes are close to those of Part 2 of Claim 9 and the PO

equilibrium is more profitable. The ranking switches somewhere in the interior of

this range.

4.2 Comparison of first- and second-price auctions

Recall from Claim 4 that, in terms of payoffs and costs, the PO equilibrium is

equivalent to the dominant strategy equilibrium of a second-price auction (SPA)

format, where the observability does not matter.

Claim 11 All the insights of Subsection 4.1 comparing the PO and PU scenarios

extend to a comparison of the SPA and FPA, respectively, with unobservable partic-

ipation.

Thus, while the FPA and SPA formats are equivalent in terms of equilibrium

profit and welfare when participation is observable, they are not equivalent with

unobservable participation in this environment, and their ranking is affected by the

magnitudes of these costs.

Given our “informal auctions”perspective, we think of the choice of the auction

format not from a design angle, but rather as a proxy for some mix of bidding and

bargaining that arises naturally in these situations. In line with this, the results

comparing these two formats bring out elements that will be present to various

degrees in hybrid formats, and they may also shed light on circumstances in which

one format or the other is more likely to emerge.

Remark. Above, we explained that the seller has a stronger incentive to recruit
in the PO scenario because this induces "more aggressive bidding." We also noted

that the PO equilibrium is equivalent (in terms of profit) to the dominant strategy

equilibrium of the SPA scenario in which the bidding (one’s own value) is indepen-

dent of observability, and hence greater participation in the SPA scenario does not

23



induce “more aggressive bidding.”These two observations are not inconsistent with

each other. It is not aggressive bidding per se, but rather the expected price, that

affects the incentive to recruit. In the SPA, the presence of more bidders does not

induce more aggressive bidding, but it does translate to a higher expected price.

4.3 Disclosure

Suppose that the seller could credibly commit in advance to always disclose or always

not disclose the number of participants prior to the bidding. This is equivalent to

the seller choosing between the PO and PU scenarios. Thus, the comparison in

Subsections 4.1—4.2 applies also to the disclosure question (if such commitment is

possible). In particular, it follows from the above discussion that the seller may

prefer to commit in advance to disclosure or no disclosure depending on s and c.

5 Uncertainty about seller’s type

It is natural to suppose that bidders are uncertain about the seller’s recruitment

effort (even in equilibrium). This is modeled here by assuming bidders’uncertainty

about s.

5.1 Binary setup

We minimally modify the PO model of Subsection 1.1 to capture this uncertainty.

Privately known seller’s type ω has marginal recruitment cost sω and occurs with

prior probability ρω, ω = L,H. Type L is more effi cient, sH > sL > 0. Seller type

ω selects recruitment effort γω.

Contacted bidders decide on entry, then observe their own value and the num-

ber of participants, and finally submit bids in an FPA. Bidders’symmetric entry

and bidding strategy (q,β) and the state-dependent participation rates λ:=(λL, λH),

where λω = qγω, are just as in the PO scenario.

In any symmetric equilibrium, β must be the unique FPA symmetric equilibrium

strategy βFPA (v, n) (see (1)). Therefore, for any given participation rate λ, the

seller’s revenue and the bidders’ex-ante expected payoff are the same as in the PO
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scenario. Hence, the profit of seller type ω is

Πω(λω, q) = Ro(λω)− λω
sω
q
,

and, given bidders’belief µ (the distribution over λ conditional on being contacted),

their expected payoff is Eµ(Uo(λ)) and their optimal entry decision q satisfies (2).

For λ 6= 0, let

φω(λ) =
ρωλω

Σρωλω
.

Since λ 6= 0 implies γ:=(γL, γH) 6= 0, it follows that φω(λ) is the probability of ω,

conditional on a bidder being contacted by the seller. An equilibrium consists of

λ∗ = (λ∗L, λ
∗
H), and q∗ such that the following hold:

(E1) λ = λ∗ω maximizes Πω(λω, q
∗).

(E2) There exists belief µ such that

(i) q∗ is optimal given µ, i.e., it satisfies (2);

(ii) if λ∗ 6= (0, 0), then µ(λ∗ω) = φω(λ∗) (confirmation on path);

(iii) if λ∗ = (0, 0), then every λ in the support of µ maximizes Πω(λ, q∗) for

some ω.

Claim 12 There exists an equilibrium.

The equilibrium analysis just imports what we know from the PO scenario to

the current setting. The following discussion and the diagram prove Claim 12 above

and the subsequent Claim 13. Recall from the PO scenario that so is the maximal

s that sustains equilibrium with trade; that λo(z) is the profit-maximizing λ for a

given z ≤ so (i.e., the maximal solution of R′o(λ) = z); that λo is the minimum

profitable scale for the seller (λo = λo(so)); and that λ
c
is the maximal λ with which

bidder entry is beneficial (Uo(λ
c
) = c).

Let

λ̂ω(q) =

{
λo(

sω
q

) if sω
q
< so,

0 if sω
q
> so,

and λ̂(q) =
(
λ̂L(q), λ̂H(q)

)
. It follows immediately from the PO analysis that

λ∗ω = λ̂ω(q∗). Therefore, an equilibrium with λ∗ = (0, 0) exists if and only if sL
q∗ ≥ so,

which can occur if and only if sL ≥ so or λ
c ≤ λo, and it is unique if one of these

inequalities is strict.
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To consider equilibrium with trade, λ∗ 6= (0, 0), let V (λ) denote bidders’ex-

pected payoff at λ = (λL, λH),

V (λ) = Σφω(λ)Uo(λw). (10)

In an equilibrium with trade, q∗ has to satisfy

q∗ ∈ (0, 1) ⇒ V (λ̂(q∗)) = c,

q∗ = 1 ⇒ V (λ∗) ≥ c.
(11)

Obviously, sH > so implies λ
∗
H = 0 in any equilibrium, and we are back in the

PO scenario with commonly known s = sL, for which existence and characterization

are already established. Therefore, the only interesting case to consider is so > sH >

sL > 0.

The following diagram depicts V (λ̂(q)) as a function of q. The intersection

points between V (λ̂(·)) and c correspond to (11), and therefore capture all the

possible equilibria with trade. The maximal c that is compatible with equilibrium

with trade is c such that λ
c

= λo, just as in the PO scenario. The minimal q that

still facilitates a profitable positive scale for seller type ω is qω s.t. so = sω
qω
. At

qL, type L becomes active with the minimal positive scale λo; at qH , type H also

joins with the minimal scale λo, and this explains the discontinuity of V (λ̂(q)) at

qH . In other words, λ̂(q) = (0, 0) for q < qL; it jumps to (λo, 0) at qL and increases

continuously with q ∈ [qL, qH) according to (λo(
sL
q

), 0); it jumps again at qH to

(λo(
sL
qH

), λo), and thereafter continues according to (λo(
sL
q

), λo(
sH
q

)). For V , note

that it is decreasing until qH given that (λo(
sL
q

), 0) is increasing, and for this range,

V (λo(
sL
q

), 0) = U0

(
λo(

sL
q

)
)
. As noted, at q̄H , V jumps up. Moreover, at this point,

λo(
sL
qH

) > λo implies that V (λo, 0) > V (λo(
sL
qH

), λo), which is seen in the diagram as

V (λ̂(·)) being higher at qL than at qH .
Each panel shows all the equilibria for a given level of c. The left panel depicts

a case in which there is only one equilibrium, and in it only type L is active. The

right panel depicts a case in which there are two equilibria. In one, only type L is

active; in the other, both types are active.

The location of the V (λ̂(q)) curve depends on sL and sH . A lower sL induces

a downward shift of both parts of the curve.17 Thus, the case depicted in the left

17A lower sH shifts only the right branch of the curve downward.
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Figure 11: Equilibrium with two seller types.

panel might correspond to a lower sL than the case depicted in the right panel.

The following claim summarizes what the above discussion and the diagram have

established.

Claim 13 For so > sH > sL > 0, the equilibrium set is characterized by three

cutoffs c > c1 > c2:

(i) For c > c, the unique equilibrium has λ∗L = λ∗H = 0.

(ii) For c ∈ (c1, c), the unique equilibrium with trade has λ∗L > 0 = λ∗H .

(iii) For c < c2, the unique equilibrium with trade has λ∗L > λ∗H > 0.

(iv) For c ∈ (c2, c1), there are two equilibria with trade, one with λ∗L > 0 = λ∗H

and one with λ∗L > λ∗H > 0.

Remark. We restrict attention to pure strategies for the seller. However, if we
admit randomized strategies for the seller, then for c ∈ (c2, c1) there is also a third

equilibrium in which λ∗L > 0 and λ∗H is randomized between a positive level and 0.

5.2 Unraveling

As noted above, when sL is suffi ciently small relative to sH , only type L is active in

equilibrium (i.e., λ∗H = 0). This is so even when sH itself is small enough so that,

if it were commonly known, the equilibrium would involve active recruiting.

Claim 14 Suppose c > 0. For any sH > 0 and ρH > 0, there exists a threshold

S(sH , ρH) such that sL < S(sH , ρH) implies λ∗L > 0 and λ∗H = 0.

When sL is small, q∗ must be small as well, for otherwise λ
∗
L would be very large

and bidders entry would be unprofitable. However, a given sH combined with small
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q∗ means high marginal recruiting cost sH /q∗ for type H, making participation

unprofitable for this type. More formally, given sH and ρH , for suffi ciently small

values of sL, V (λo(sL/qH), λo) < c. Hence, for any q ≥ qH (that accommodates the

participation of H), V (λo(sL/q), λo(sH/q)) ≤ V (λo(sL/qH), λo) < c. Thus, it must

be that q∗ < qH , and the unique equilibrium is with λ∗L = λ
c
and λ∗H = 0.

In other words, if we start with the case depicted in the right panel of Figure 11

and lower sL suffi ciently, we will reach the case depicted in the left panel.

This outcome is ineffi cient: type sH might fail to trade even when sH is quite

low and would result in active trade if it were known.

This insight does not hinge on the two-types assumption. Nothing of importance

in the analysis would change if there werem > 2 types: if the lowest s is low enough,

all types with higher s will still be shut out of the market. However, the insight

does depend, of course, on the discreteness, since the argument relies on making

the ratio of the lowest to the next lowest cost small enough while keeping their

probabilities constant. The question is whether and in what circumstances a similar

unraveling occurs in an environment where exceedingly low costs are associated with

exceedingly low probabilities.

5.3 Continuum of seller types

We address the last question using a version of the model with a continuum of

possible seller types. The marginal recruiting cost s is distributed uniformly on

[s, so], where s > 0 and so is as defined above (the maximal s compatible with

active recruitment in the commonly-known-type case).

The model extends immediately to this environment. Identifying ω with s itself,

we write λs and λ = (λs)s∈[s,so].

The definition of an equilibrium also extends almost directly. For each s, λ∗s and

q∗ satisfy the equilibrium conditions (E1) and (E2) of Subsection 5.1, with s and λs
replacing sω and λω, respectively. The equilibrium belief density µ also satisfies the

analogous conditions. In particular, let

φs(λ) :=
λs∫ so

s
λsds

.
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If λ∗s 6= 0 for some s ∈ (s, s̄0], then µ(λ∗s) = φs(λ
∗) for all s. Let

V (λ) :=
∫ so
s
φs(λ)Uo(λs))ds =

∫ so
s
λsUo(λs))ds∫ so
s
λsds

.

In an equilibrium with trade, q∗ satisfies (11).

We already know from the discrete-types case that partial unraveling is possible,

in the sense that trade might be shut down for some type, even though trade would

be sustainable if that type were commonly known. The question is whether it is

possible to have complete or nearly complete unraveling in equilibrium, even when

c is low enough to allow trade when s is commonly known.

Obviously, if some seller type in [s, so] is active in equilibrium, so is every lower

type. Hence, the equilibrium has a cutoff structure, and, moreover, the cutoff must

be q∗so. It follows from the previous discussion that, for s < q∗so, λ
∗
s = λo(s/q

∗) > 0,

and, for s > q∗so, λ
∗
s = 0, where λo(z) is the profit-maximizing λ in the PO scenario

when the marginal recruitment cost is z. Let λo=(λo(s))s∈[s,so], and recall that c is

the maximal cost level compatible with trade in the PO scenario (i.e., λ
c

= λo(so) =

λo).

Claim 15 The unique equilibrium outcomes are as follows:

(i) c ≥ c: no trade, λ∗ = 0; q∗ = s/so;

(ii) c ≤ V (λo): all types are active, λ
∗ = λo; q∗ = 1;

(iii) V (λo) < c < c: only s ∈ [s, soq
∗] are active, with

λ∗s =

{
λo(s/q

∗) > 0 for s ∈ [s, soq
∗],

0 for s > soq
∗,

(12)

and q∗ ∈ (0, 1) is such that V (λ∗) = c.

Proof: The equilibrium has a cutoffstructure with cutoff q∗so and λ
∗
s, as in (12). It

is also immediate that the configurations described in Parts (i)– (iii) are equilibria.

Part (i): For c > c, the equilibrium is just the same as the λ = 0 equilibrium of

the PO scenario with s = s. That is, the support of the off-path beliefs is {0, λo(so)},
and these values are optimal for type s given q∗ = s/so. The probabilities µ satisfy

µ(0)Uo(0) + µ(λo(so))Uo(λo(so)) = c. The uniqueness is also the same as in the

corresponding PO scenario. For c = c, apart from the above equilibrium, there
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is also an equilibrium in which only type s can be active. Since type s is of zero

measure, we think of this as a no-trade outcome as well.

Parts (ii) and (iii): The λ∗s and q
∗ are optimal, and there are no off-path moves.

To see that the equilibria in Parts (ii) and (iii) are unique among those with λs > 0

for some s, suppose that, in either scenario, there are two equilibria with q∗1 < 1

and q∗2 > q∗1. The corresponding equilibrium values of λ, namely λ∗s(q
∗
1) and λ∗s(q

∗
2),

are given by (12). Hence, V (λ∗(q∗2)) < V (λ∗(q∗1)) = c, in contradiction to q∗2 > 0.

Therefore, to establish uniqueness, we only have to rule out the no-trade equilibrium.

Such an equilibrium may be supported only by the beliefs µ described in the proof

of Part (i). But c < c = Uo(λo(so)) implies that µ(0)Uo(0)+µ(λo(so))Uo(λo(so)) = c

cannot hold. �

Since by definition c = Uo(λo), for any c < c and commonly known s < so, the

equilibrium in the PO scenario involves trade. In contrast, Part (iii) of Claim 15

identifies a range of c < c and s < so for which there is no trade.

The extent of such unraveling depends on c and s. The following claim identifies

a threshold c < c such that, if bidder entry cost c exceeds c, then the unraveling is

nearly complete when s is small; if c < c, trade always takes place regardless of how

small s is.

The probability of equilibrium with no trade (given c and s) is

Pr(no-trade|c, s) = Pr({s : λ∗s = 0}|c, s).

Proposition 6 There exists c < c such that

(i) for any c ∈ (c, c), lims→0 Pr(no-trade|c, s) = 1;

(ii) for any c < c and any s < so, Pr(trade|c, s) = 1.

Proof: For the proof, we include s as an argument in V (λo, s). Let

c := lim
s→0

V (λo, s) = V (λo, 0).

Since V (λo) is monotone in s (if s is decreasing, bidders are facing higher λ; see

the proof of Claim 15), it holds that Uo(λo(so)) > V (λo, s) > lims→0 V (λo, s). So,

c = Uo(λo(so) implies that

c < c.
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If c > c, then for small enough s, V (λo, s) < c, and the equilibrium is given by

Part (iii) of Claim 15. Therefore,

Pr(no-trade|c, s) =
so − q∗so
so − s

.

A change of variables shows that, for all q > 0,

V (λo, 0) =

∫ so
0
λo (s)Uo(λo (s)))ds∫ so

0
λo (s) ds

=

∫ soq
0
λo

(
s
q

)
Uo(λo

(
s
q

)
))1
q
ds∫ soq

0
λo

(
s
q

)
1
q
ds

, (13)

where the right-hand side equals V (λ (·, q) , 0) for λ (·, q) = λo

(
s
q

)
. Thus, V (λ (·, q′) , 0) =

V (λ (·, q′′) , 0) for all q′, q′′ > 0. (The bidders’payoffs are independent of the cutoff

soq. This stationarity property utilizes the uniform distribution.)

Now, denote by λ∗k and q∗k the equilibrium magnitudes for sk. From (13), if

q∗k → q > 0, then limk→∞ V (λ∗k, sk) = V (λo, 0). Since c > c = V (λo, 0), this implies

a contradiction to buyer optimality. Hence, it must be that q∗k → 0, which implies

the claim.

If c < c, then for any s, V (λo, s) > c, and the equilibrium is given by Part (ii)

of Claim 15. Therefore, Pr(trade|c, s) = 1. �

Note again that nearly complete unraveling occurs for a range of c < c for which

trade would take place at any commonly known s ∈ (0, so].

6 Discussion and extensions

6.1 Welfare

Welfare W (λ, q) is identified with the total surplus,

W (λ, q) := T (λ)− λs
q
− λc,

where T (λ) =
∫ 1

0
vλe−λ(1−G(v))g(v)dv =

∫ 1

0
[1 − e−λ(1−G(v))]dv is the expected value

of the first order statistic given Poisson(λ)-distributed participation. Let λw and qw

denote the welfare-maximizing magnitudes.
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Proposition 7 (i) qw = 1. (ii) If Uo(0) > s + c, then λw is the unique level

satisfying

Uo(λ) = c+ s. (14)

If Uo(0) ≤ s+ c, then λw = 0.

Proof : (i) Obvious. (ii) Note that

T ′(λ) =

∫ 1

0

(1−G(v)) [1− e−λ(1−G(v))]dv = Uo (λ) ,

using (20) for the second equality. Since Uo is strictly decreasing, T is strictly

concave. It follows that, (14) is the first-order condition for welfare maximization

and the condition is suffi cient, proving the claim. �

The critical equality is

T ′(λ) = Uo(λ). (15)

For intuition, recall the equivalence of the expected payoffs to those of the SPA,

where each bidder’s payoff is equal to his marginal contribution to the total surplus.

There are two types of ineffi ciency in equilibrium. First, as we already know,

we can have q∗ < 1 in equilibrium, which immediately means wasted recruiting

effort. Second, as shown below, for almost all (s, c) combinations in the PO scenario,

λ∗ 6= λw, and both excessive participation, λ∗ > λw, and deficient participation,

λ∗ < λw, may arise in equilibrium.

For the equilibrium of the PO scenario to coincide with the welfare maximum,

we must have R′o(λ
∗) = s and Uo(λ

∗) = s+c. Since both Uo and R′o are independent

of s and c, these equalities in general cannot be expected to hold simultaneously.

Thus, in general, the equilibrium does not maximize welfare.

Figure 12 depicts a possible relation between Uo(λ) and R′o(λ). Its relevant

features are consistent with a uniform value distribution, that is, G (v) = v.

In this case, since for any λ ≥ λo, Uo(λ) < R′o(λ), it follows that λ∗ > λw in any

equilibrium with trade. If λ∗ < λ
c
, then s + c > s = R′o(λ

∗) > Uo(λ
∗); if λ∗ = λ

c
,

then s + c > c = Uo(λ
∗). In the case of λ∗ = λ

c
, there is also the ineffi ciency of

q∗ < 1 (except when s is exactly equal to R′o(λ
c
)). On the other hand, there is a

range of (s, c) combinations such that s + c < Uo(0) requires trade, λw > 0, but

either s > so or λ
c
< λo precludes trade in equilibrium, meaning, λ

w > λ∗ = 0.
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Figure 12: Welfare.

We did not examine in detail the relationship between equilibrium and the wel-

fare maximum in the PU scenario. However, the observation that the equilibrium is

generally ineffi cient should hold for that scenario as well. Since the maximal equilib-

rium in the PU scenario involves lower participation than that of the PO scenario,

there will be less ineffi ciency due to excessive recruiting.

For a general G (satisfying our assumptions), we have already established that

Uo is decreasing and R′o is single-peaked, as shown in Figure 12. The fact that Uo
intersects R′o for the first time at some point λ̃ to the right of the maximum of R′o
also holds for general G (see Claim 20 in the online appendix). Some other details in

the figure have not been established analytically for a general G,18 but these details

do not affect the general understanding of the suboptimality of the equilibrium.

6.2 Fees/subsidies to influence participation

The question of optimal entry subsidies or fees is of secondary importance for this

paper. First, it belongs more to the “design” paradigm that assumes significant

seller commitment power, which we de-emphasize in this paper. Second, entry fees

and subsidies may be abused by non-serious bidders and sellers, and their credible

implementation may require commitment and enforcement capabilities.

Here, we put aside those issues and consider briefly the possibility of a flat

18If G is uniform, we have shown that Uo(λ) and R′o(λ) intersect only once and that λ̃ is below
λo. For general G, we have not established these properties. However, loosely speaking, we expect
Uo(λ) to be mostly below R′o(λ) since Ro(λ) is below T (λ) and converging to it.
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subsidy/fee that is offered to, or collected from, all bidders who enter the auction

in the PO scenario. Let D denote this fee (D < 0 means it is a subsidy). The

subsequent interaction is formally equivalent to the PO scenario with bidders’cost

given by c + D and seller’s marginal cost given by s
q
− D. Let λ∗(D) and q∗(D)

be the unique equilibrium magnitudes given D, and let λ
c+D

be the solution to

Uo(λ
c+D

) = c+D.

Claim 16 (i) If the seller can commit to λ, then profit is maximized at λw with
D = s > 0.

(ii) Suppose that the seller cannot commit to λ. If there exists a D that facilitates

trade (i.e., s − D ≤ so and λ
c+D ≥ λo), then profit is maximized with D

∗ that

satisfies s−D∗ = R′o(λ
c+D∗

), with

λ∗(D∗) = λ
c+D∗

and q∗(D∗) = 1.

Part (ii) implies that the profit-maximizing fee is related to the equilibrium

configuration that prevails when fees cannot be imposed (i.e., the case of D = 0).

If λ∗(0) < λ
c
(i.e., recruiting is unconstrained when fees are not allowed), then

D∗ > 0– a fee. If λ∗(0) = λ
c
, than D∗ < 0– a subsidy.

Proof of Claim 16: (i) By committing to λw and imposing an entry fee D that

satisfies Uo(λ
w) = c + D, the seller creates the maximal possible surplus and fully

appropriates it since bidders’payoff is 0. Since Uo(λ) is decreasing and λ
c
> λw, it

follows that D = s > 0.

(ii) Given D, we noted that this is the PO scenario with seller cost s
q
− D

and bidders’cost c + D. Thus, in equilibrium given D, either λ∗(D) ≤ λ
c+D

and

R′o(λ
∗(D)) = s−D, or λ∗(D) = λ

c+D
and R′o(λ

∗(D)) = s
q∗ −D.

If λ∗(D) < λ
c+D

, thenD′ > D such that the inequality still holds yields λ∗(D′) >

λ∗(D) and higher profit.

If λ∗(D) = λ
c+D

and R′o(λ
∗(D)) > s − D, then q∗(D) < 1. In this case, a fee

D′ < D defined by

s−D′ = s

q∗(D)
−D,

results in q∗(D′) = 1, λ
c+D′

> λ
c+D

and λ∗(D) = λ∗(D′). This and the equality of

the marginal recruitment costs imply that the profits for D and D′ are equal as well.

But then the argument of the previous paragraph implies that a slightly higher fee
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than D′ would be even more profitable.

Thus, by elimination, D∗ satisfies λ∗(D∗) = λ
c+D∗

and R′o(λ
c+D∗

) = s−D∗. �

Part (i) is established by Levin and Smith (1994) in the context of their model.19

In contrast, in the absence of commitment to λ, the availability of fees and subsidies

does not necessarily improve welfare. For example, if λw < λ∗ < λ
c
with no fees or

subsidies, then the profit-maximizing entry fee is strictly positive and will drive the

equilibrium λ further away from λw.

6.3 Reserve price

This subsection discusses the effects of a reserve price r– a minimum bid below

which the good is not sold. Before we turn to the details, it should be mentioned

that the imposition of a reserve price requires commitment power that might not

be available in the less formal settings that we have in mind. However, it is still

interesting to understand the role of such instruments even if their use is limited or

imperfect.

Assume that the auctions in both scenarios are subject to a reserve price r > 0

(not necessarily the optimal one). The equilibrium then differs in some details from

that of the r = 0 case analyzed above, but not in the main qualitative features.

Graphically, the marginal revenue curves in the diagrams change somewhat: for

small values of λ they lie above the r = 0 curve (in particular, the intercept at

λ = 0 is r(1 − G(r)) rather than 0), and for large values of λ they lie below the

r = 0 curve. However, their general properties (such as single peakedness of dRo/dλ

and the relationship between the PO and PU curves) remain the same, and the

general relationship between the curves and the nature of the equilibria also does

not change. One immediate implication of the intercept at λ = 0 being r(1−G(r))

is that, in the PU scenario, the no-trade equilibrium λ = 0 will continue to exist

only for s ≥ r(1−G(r)). For smaller level of s, the equilibrium necessarily involves

trade. Bidders’ entry decision is also affected, since the reserve price lowers the

benefit of entry for any level of anticipated participation.

Recall from the literature that, under the maintained assumptions on G, the

revenue-maximizing rmax for a standard auction satisfies r = 1−G(r)
g(r)

. It follows

19The critical argument is that (15) holds, that is, bidder entry is surplus-maximizing, and the
seller can extract the full surplus through an appropriate fee.
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immediately that this is also true for the FPA with stochastic participation in the

PU scenario. Therefore, if the seller commits to r only after bidders enter, then

the profit-maximizing r is rmax. Of course, since rmax maximizes the revenue at any

realized auction, it also maximizes the expected revenue in both scenarios, given

any fixed participation rate λ.

Let us add r as an argument and write Uo(λ; r), Ro(λ; r), Πo(λ, q; r), etc.

Claim 17 (i) For a given λ, Ro(λ; r) (and hence20 Ru(λ, βλ(r))) is maximized at

rmax.

(ii) If the seller commits to r only after bidders enter, the reserve price is rmax in

any equilibrium.

If the seller can commit to a reserve price in advance, then it affects entry, and

therefore the profit-maximizing r may differ from rmax. Suppose that the seller

commits to a reserve price r, and then the interaction proceeds according to the PO

scenario. Essentially the same arguments presented in the r = 0 case establish that,

in the subgame following the selection of r, there is a unique equilibrium. Let λ∗(r),

q∗(r), and λ
c
(r) denote the equilibrium magnitudes in the subgame following r, and

let r∗ denote the seller’s profit-maximizing r, i.e., r∗ = arg maxr Πo(λ
∗(r), q∗(r); r).

Claim 18 In the PO scenario, the following hold:
(i) If λ∗(r∗) > 0 and bidders’entry does not constrain the equilibrium, i.e., λ∗(r∗) <

λ
c
(r∗), then r∗ = rmax.

(ii) If bidders’entry constrains the equilibrium, i.e., λ∗(r∗) = λ
c
(r∗), then r∗ 6= rmax.

Both parts of this claim are almost immediate. In Part (i), bidders’entry does

not constrain the seller, and so there is no reason to deviate from rmax. In Part (ii),

bidders’entry considerations do constrain the equilibrium, so the first-order effect

of a change of r at r = rmax is its effect on entry, which does not vanish. The proof

(as well as the remaining proofs for this section) are in the online appendix.

The introduction of r > 0 affects the seller’s profit and the bidders’expected

benefit at each participation level. First, it makes the auction more profitable. This

increases the range of s for which an equilibrium with trade can be sustained; i.e.,

so(r) > so(0). Second, it lowers bidders’benefit from entry for any expected level

20By revenue equivalence, Ru(λ, βλ(r)) = Ro(λ, r).
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of participation, resulting in a lower maximal level of participation for which entry

is profitable; i.e., λ
c
(r) < λ

c
(0).

Intuitively, it seems that r∗ should be lower than rmax because decreasing r

slightly when it is above rmax increases the profitability of the auction and relaxes

the bidders’entry constraint. However, this intuition is incomplete, since q∗ would

change at the same time and the total recruitment cost would increase. For this

reason, although r∗ < rmax might be true in general, we have been able to establish it

only under additional conditions that guarantee that the λ
c
(r) values corresponding

to the r values in the relevant range are not too small. This will be the case if c is

not too large.21

Analogous results most likely hold for the equilibria with trade in the PU sce-

nario, but we have not proved this. However, it is immediate that, if s ≤ r[1−G(r)]

and c is not prohibitive, the no-trade outcome is not an equilibrium in the PU sce-

nario. Since r[1−G(r)] is maximized at rmax, it follows that if s < rmax[1−G(rmax)],

the seller can avoid the no-trade outcome by selecting an appropriate reserve price.

6.4 Bidders learn their value before entering

In the models discussed so far, bidders learned their private values only after incur-

ring the cost c. This is a scenario of costly information acquisition. If, however, the

values are readily known and the main effort lies in bid preparation or other costs

associated with bidding, then a more suitable model would have the bidders’costly

entry decision taking place with knowledge of their private values. This subsection

outlines how our analysis can be expanded to cover this case. A full analysis would

take too much space, but our discussion suggests that the analysis is doable and that

the main qualitative insights would be the same as those for the models discussed

earlier. In particular, we show below for the case of small marginal recruitment cost

s that the recruitment cost is higher in the PO scenario than in the PU scenario.

Consider the PO scenario in this case. If entry is profitable for a bidder with

value v, then it is profitable for bidders with higher values. Therefore, bidders will

enter if and only if their value v exceeds a certain cutoff v ∈ (0, 1), at which a

prospective bidder is indifferent about entry.

21The precise condition is λ
c
(r) [2−G(r)] > 1.
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As before, let γ denote the Poisson rate of contacts made by the seller. The

probability that a contacted bidder enters (the counterpart of q above) is 1−G(v),

and the effective Poisson rate of entry into the auction is λ = γ(1 − G(v)). For

a given v, the seller’s problem of choosing γ at marginal cost s is equivalent to

choosing λ at marginal cost s/(1−G(v)). As before, it will be convenient to express

the relevant magnitudes in terms of λ rather than γ.

The bidding game among entrants is an FPA with observable participation and

private values independently drawn from [v, 1]. In equilibrium, if there is only one

participant, the winning bid is 0; if there are two or more participants, the bids lie

in [v, 1] and are monotone in values. Therefore, the seller’s revenue is 0 if fewer than

two bidders enter, and it is the appropriate equilibrium winning bid which lies in

[v, 1] otherwise. Given λ and v < 1, the seller’s payoff Πo(λ, v) is

Πo(λ, v) = Ro(λ, v)− λs/(1−G(v)). (16)

Since the equilibrium bids in the bidding subgame with two or more bidders are

monotone in values, the marginal entering bidder v will win the good only if he is

the sole entrant, in which case he will pay 0. The probability that the bidder with

value v is the sole entrant is e−λ. Therefore, this bidder’s payoff from entering is

ve−λ, and the indifference of bidder v with respect to entry implies

ve−λ = c. (17)

An equilibrium with trade is characterized by some λ > 0 and v < 1 such that

λ maximizes Πo(λ, v) and v satisfies (17).

Consider next the PU scenario. Here, too, bidders enter if their value v exceeds

a threshold v. Given the Poisson rate γ of contacts made by the seller, the effective

Poisson rate of entry into the auction is λ = γ(1−G(v)). As before, it will be con-

venient to express the relevant magnitudes in terms of λ rather than γ. The bidding

game among entrants is an FPA with unobservable participation and independent

private values drawn from [v, 1]. Given that bidders expect an effective Poisson rate

λ̂ of entry, the equilibrium bidding strategy of the entering bidders, β(v; v, λ̂), is

strictly increasing in v ∈ [v, 1].

With probability e−λ no bidders enter and the seller’s revenue is 0; otherwise it
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is the winning bid. Let Ru(λ, v, λ̂) denote the expected winning bid given λ, λ̂, and

v < 1. The seller’s payoff Πu(λ, v, λ̂) is

Πu(λ, v, λ̂) = Ru(λ, v, λ̂)− λs/(1−G(v)). (18)

Since β(v; v, λ) is strictly increasing in v, the marginal entering bidder v will win

the good only if he is the sole entrant. Therefore, β(v; v, λ̂) = 0, and v satisfies the

same entry condition as above,

ve−λ = c. (19)

An equilibrium with trade is characterized by λ > 0 and v < 1 such that λ

maximizes Πu(λ, v, λ̂) with λ̂ = λ and v satisfies (19).

Existence of an equilibrium is somewhat more complicated than in the previous

scenarios of Subsections 2.2 and 3.2, since here v varies with λ. We do not undertake

the full equilibrium analysis for this case. Instead, we conjecture that, for suffi ciently

small s and c, there exists an equilibrium with trade in both scenarios. Under this

assumption, we compare the equilibrium outcomes in the limit as s→ 0.

Let λi(s) and vi(s) denote the equilibrium magnitudes in the equilibrium with

maximal λ in the PO (i = o) and PU (i = u) scenarios, respectively.22

Claim 19 (i) lims→0 λi(s)=− ln c for i = u and i = o.

(ii) In the limit, total recruitment cost is higher in the PO scenario:

lim
s→0

λo(s)
s

1−G(vo(s))
= (ln c)2c > lim

s→0
λu(s)

s

1−G(vu(s))
.

Thus, in the limit as s→ 0, both scenarios give rise to the same level of effective

participation, but total recruitment cost is higher in the PO scenario. This ranking

of the costs is the same as in the information acquisition case in which bidders learn

their values only after incurring c.

6.5 Uniqueness of equilibrium in the PO scenario

The equilibrium outcome of the PO scenario is unique for almost all values of s

and c (except when s = s̄o or λ
c

= λo) given the refinement imposed by the last
22In the PO scenario this is probably the unique equilibrium. However, we do not prove this

because it would be essentially a repetition of the analysis in Subsection 2.2.
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condition of the equilibrium definition in Section 1.2.23 Without the refinement, the

no-trade outcome is always an equilibrium. More precisely, without the condition,

• if s > s̄o or λ
c
< λo, then no-trade is the unique equilibrium outcome;

• if s ≤ s̄o and λ
c ≥ λo, there are two equilibrium outcomes: one with λ∗ > 0

and one with λ∗ = 0.

In the case with s < s̄o and λ
c
> λo, the additional no-trade equilibrium λ∗ = 0 is

supported by the off-path belief µ(λ
c
) = 1 and q∗ ∈ (0, s

s̄o
). That is, bidders who are

contacted off-path conjecture that λ = λ
c
, which makes them just indifferent among

all choices of q, including q∗ that makes it unprofitable for the seller to recruit. Such

an equilibrium violates the refinement since the seller’s best response to q∗ < s
s̄o
is

λ = 0, rather than the conjectured λ
c
.24

Observe that such a no-trade equilibrium is unconvincing on other grounds as

well. First, when s < s̄o and λ
c
> λo, the no-trade equilibrium is Pareto dominated

by the equilibrium with trade. Second, it is not robust to perturbations. Consider

a perturbation in which the seller is required to choose at least an effort γ ≥ ε > 0,

for some small ε > 0. As ε → 0, this perturbed game has a unique limit outcome

that corresponds to the equilibrium with trade. This is because, for any q ∈ (0, 1)

that is small enough so that s
q
≥ s̄o, the seller’s best response is either λ = ε or λo

(or mixing between them). However, in all these cases, λ
c
> λo implies that the

bidders would have a strict incentive to enter, implying q = 1.

Formally, since this game is not finite (it has both a continuum of actions and an

unbounded number of players), we cannot directly apply the concept of stability in

the sense of Kohlberg—Mertens (1986). However, if we look at a discretized version

in which the seller chooses λ from a finite grid (that contains 0, λ
c
, and λo), we

can define a refinement in the spirit of stability, requiring that the equilibrium be

immune to all vanishing fully mixed perturbations. It is fairly immediate that the

no-trade equilibrium will fail such refinement, while the unique equilibrium with

trade will survive it.25

23If γ∗ = 0, then every γ̂ in the support of µ maximizes the seller’s payoff given q∗ and β∗.
24If q∗ = s

s̄o
, then λ = λo is also a best response, but still λo 6= λ̄

c
.

25Note, however, that the no-trade equilibrium will survive a refinement in the spirit of perfect
equilibrium that is defined in an analogous way, since we can focus on a sequence of perturbations
for which the expectation conditional on λ > 0 is λ

c
.
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We can also confirm the instability of the no-trade equilibrium indirectly by

observing that it fails the invariance property of stable equilibrium. To see this,

consider the equivalent extensive form in which the seller first chooses between

λ = 0, which terminates the game, and another action, “λ > 0”, which stands

for all positive recruitment efforts. The action “λ > 0” is followed by the seller’s

choice of the specific λ and the subsequent bidders’decisions. The unique subgame-

perfect equilibrium in this extensive form is the equilibrium with trade, by the same

argument presented above for the variation that embodies the constraint γ ≥ ε.

7 Appendix

7.1 Proofs for the PO scenario

7.1.1 Proof of Claim 1: Bidders’ex-ante expected payoff

We show that

Uo(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)]dv. (20)

This explicit expression for Uo can be derived directly. But we instead use an

indirect argument, noting that the total surplus (gross of the recruitment costs) is

the expectation of the first order statistic of Poisson(λ),

Total Surplus(λ) =

∫ 1

0

[
1− e−(1−G(v))λ

]
dv,

and is equal to the sum of the revenue, Ro(λ), and total bidders’expected payoff,

λUo(λ). Therefore,

Uo(λ) =

(∫ 1

0

[
1− e−(1−G(v))λ

]
dv −Ro(λ)

)
/λ.

Replacing Ro(λ) by the expression in (22) below, we get (20). Inspection of the

RHS of (20) immediately implies the claimed properties of U0.
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7.1.2 Proof of Claim 3

Let F SPA denote the price distribution arising in the dominant strategy equilibrium

of the SPA format, given the same participation process26

F SPA (b|λ) = e−(1−G(b))λ + e−(1−G(b))λ ((1−G (b))λ) . (21)

By revenue equivalence,

Ro(λ) =

∫ 1

0

(
1− F SPA (b|λ)

)
db (22)

=

∫ 1

0

[
1− e−(1−G(b))λ − e−(1−G(b))λ ((1−G (b))λ)

]
db.

Therefore,

d

dλ
Ro(λ) =

∫ 1

0

d

dλ

(
1− F SPA (b)

)
db =

∫ 1

0

λ (1−G (b))2 e−(1−G(b))λdb. (23)

Parts 1 and 2: Positivity, continuity, and values at λ = 0 and λ→∞ are obvious

from (23). To establish that R′o is single-peaked, consider the second derivative

d2

dλ2Ro(λ) =

∫ 1

0

(1−G (b))2 e−(1−G(b))λdb−
∫ 1

0

λ (1−G (b))3 e−(1−G(b))λdb (24)

= e−λ
(

1

g(0)
−
∫ 1

0

(1−G(b))2 eG(b)λ

[
b− 1−G(b)

g(b)

]′
b

db

)
,

using integration by parts.

Recall that by assumption,
[
b− 1−G(b)

g(b)

]′
b
> 0. Thus, the integral on the last

line of (24) is positive and increasing in λ, while the first term is positive and

independent of λ. Therefore, d2

dλ2
Ro(λ) < 0 for large λ, and once it turns negative,

it stays negative. Inspection of the first line of (24) reveals that d2

dλ2
Ro(λ) > 0 for

λ ∈ [0, ε] for some ε > 0. The two observations imply that d
dλ
Ro(λ) is single-peaked.

Part 3: Immediate from Parts 1 & 2 and d(Ro(λ)/λ)dλ =
[
R′o(λ)− Ro(λ)

λ

]
/λ.

26FSPA is not the same as the winning bid distribution of the FPA format we consider, and this
is not claimed.
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7.1.3 Proofs of Propositions 3 and 2 and Corollary 1

The following lemma summarizes the implications of backward induction from Sub-

section 2.1 and will be used in the proofs of the propositions.

Lemma 1 If (λ∗, q∗) is an equilibrium, then (i) either λ∗ = 0 or λo ≤ λ∗ ≤ λ
c
and

R′o (λ∗) = s
q∗ ; (ii) if q

∗ ∈ (0, 1), then either λ∗ = λ
c
, or λ∗ = 0 and Eµ[Uo(λ)] = c;

(iii) if λ∗ = 0, the support of µ is contained in {0, λo}.

Proof : Part (i): From (4), λ∗ ≤ λ
c
. The rest follows immediately from Claim 2.

Part (ii) follows immediately from (2).

Part (iii): λ∗ = 0 impliesmax Πo(·, q∗) = 0. So, by the last equilibrium condition,

Πo(λ, q
∗) = 0 for any λ in the support of µ. The result then follows from Claim 2

and the fact that the only λ ≥ λo s.t. R
′
o (λ) = s

q
and Πo(λ, q

∗) = 0 is λo. �

Proof of Proposition 3: From Lemma 1, the only possible equilibrium outcome in
these cases is λ∗ = 0. It remains to establish the existence of equilibria with λ∗ = 0.

If s > s̄o, then λ = 0 is the uniquely optimal choice of the seller for any q∗.

Therefore, λ∗ = 0 with q∗ = 1 and µ(0) = 1 is an equilibrium.

If s ≤ s̄o and λ
c
< λo, then the following is an equilibrium: λ

∗ = 0, q∗ = s/s̄o,

and µ with support on {0, λo} such that µ(0)U(0) + µ(λo)U(λo) = U(λ
c
). The

choice of q∗ guarantees that max Πo(λ, q
∗) = 0 and that it is maximized at λ = 0

and λ = λo. The choice of µ implies Eµ(U(λ)) = U(λ
c
) = c, so q∗ is bidder optimal.

�

Proof of Proposition 2: If λ
c ≥ λo(s), then λ

∗ = λo(s) and q∗ = 1 is an equilib-

rium. By definition λo(s) = arg max Πo(·, 1). The optimality of q∗ = 1 for bidders

follows from λ
c
> λ∗ and (2).

If λ
c
< λo(s), then λ

∗ = λ
c
and q∗ satisfying λo( s

q∗ ) = λ
c
constitute an equilib-

rium. By the choice of q∗, λ
c

= arg max Πo(·, q∗). Since, by definition, U
(
λ
c
)

= c,

the optimality of q∗ for bidders follows.

It follows from Lemma 1 that, if λ∗ > 0, then λ∗ ≥ λo and R
′
o (λ∗) = s

q∗ , and

that q∗ may differ from 1 only if λ∗ = λ
c
. Therefore, the only possibilities are

λ∗ = λ
c
or λ∗ = λo(s). If λ

c
> λo(s), then for any q, R′o

(
λ
c
)
< s

q
, so λ

c
cannot be

an equilibrium outcome. If λ
c
< λo(s), then U (λo(s)) < c, so λo(s) cannot be an

equilibrium outcome. Thus, if λ∗ > 0, it must be that λ∗ = min{λc, λo(s)}.
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It remains to show that there is no equilibrium with λ∗ = 0. It follows from

Lemma 1 that the support of the belief µ in such an equilibrium would be contained

in {0, λo}. Since λ
c
> λo, q

∗ must be 1. But then Πo(λo(s), 1) > Πo(λo, 1) = Πo(0, 1),

contradicting the equilibrium condition on beliefs. �

Proof Corollary 1: Part 1: Since c = 0, q∗k = 1 for all k. Let λk = 1√
sk
. Since

limλ→∞Ro (λ) = 1, we have Πo(λk, q
∗
k, sk) = Ro (λk) −

√
sk → 1. From optimality,

Πo(λ
∗
k, q
∗
k, sk) ≥ Πo(λk, q

∗
k, sk) for all k. Hence lim Πo(λ

∗
k, q
∗
k, sk) ≥ 1. This together

with Πo(λ
∗
k, q
∗
k, sk) ≤ Ro (λ∗k) ≤ 1 implies that limk→∞ λ

∗
ksk = 0.

Part 2: For all sk < R′o

(
λ
c
)
, λ∗k = λ

c
and sk

q∗ = R′o

(
λ
c
)
. Therefore, sk

q∗λ
∗
k =

λ
c
R′o

(
λ
c
)

= constant and Πo(λ
∗
k, q
∗
k, sk) = Ro

(
λ
c
)
− λcR′o

(
λ
c
)

= constant. �

7.2 Proofs for the PU scenario

7.2.1 Proof of Claim 5: The bidding strategy

Recall that SPA stands for the second-price auction when its dominant strategy

equilibrium is played. By revenue equivalence,

βλ̂ (v) = E [payment | v; win SPA]

=
∑
i=0

Pr (i other bidders | v; win SPA)E [payment | v; win SPA; i other bidders] .

Note that Pr (i other bidders | v; win SPA) =
e−λλi
i!

Gi(v)

e−λ(1−G(v))
. Let v(i)

1 denote the first

order statistic of a sample of i values drawn from G, where v(0)
1 = 0. Using the above

and rewriting proves the claim:

βλ̂ (v) =
1

e−λ(1−G(v))

∞∑
i=0

e−λλi

i!
Gi (v)E [payment | v; win SPA; i others]

=
1

e−λ(1−G(v))

∞∑
i=0

e−λλi

i!
Gi (v)E

[
v

(i)
1 |v

(i)
1 ≤ v

]
=

1

e−λ(1−G(v))

∞∑
i=0

e−λλi

i!
Gi (v)

∫ v

r

x
dGi (x)

Gi (v)

=
1

e−λ(1−G(v))

∞∑
i=0

e−λλi

i!
Gi (v)

(
v −

∫ v

0

Gi (x)

Gi (v)
dx

)
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=
e−λ

e−λ(1−G(v))

∞∑
i=0

(λG (v))i

i!
v − 1

e−λ(1−G(v))

∞∑
i=0

e−λλi

i!

∫ v

0

Gi (x) dx

=
e−λeλG(v)

e−λ(1−G(v))
v − 1

e−λ(1−G(v))

∫ v

0

∞∑
i=0

e−λ (λG (x))i

i!
dx

= v − 1

e−λ(1−G(v))

∫ v

0

∞∑
i=0

e−λ (λG (x))i

i!
dx

= v −
∫ v

0

e−λ(G(v)−G(x))dx.

7.2.2 Proof of Claim 7

Let Fu (·|λ, βλ̂) be the distribution of the price received by the seller, given that
actual participation is Poisson (λ) distributed and all bidders bid according to βλ̂,

where the no-trade event is identified with price 0. Let β̃
−1

λ denote the “generalized

inverse” of βλ, defined as follows: β̃
−1

λ = β−1
λ over [0, βλ(1)) and β̃

−1

λ ≡ 1 over

[βλ(1), 1]. Note that this implies that β̃
−1

0 ≡ 1. Therefore,

Fu (b|λ, βλ̂) = e
−λ
(

1−G
(
β̃
−1
λ̂ (b)

))
. (25)

Observe that Fu is indeed a c.d.f. and is well defined for λ̂ = 0 as well: since βλ̂
is non-decreasing for any λ̂ ≥ 0, β̃

−1

λ̂ is non-decreasing and so is F ; since β̃
−1

λ̂ (1) = 1,

Fu (1|λ, βλ̂) = 1, and Fu (0|λ, βλ̂) = e−λ < 1. Then,

Ru(λ, βλ̂) =

∫ 1

0

[1− Fu (b|λ, βλ̂)]db =

∫ 1

0

[1− e−λ
(

1−G
(
β̃
−1
λ̂ (b)

))
]db, (26)

where the last equality is obtained by substitution from (25). This and the charac-

terization of βλ̂ in (7) imply that Ru is twice continuously differentiable in λ and

λ̂:
∂

∂λ
Ru(λ, βλ̂) =

∫ 1

0

(
1−G

(
β̃
−1

λ̂ (b)
))

e
−λ
(

1−G
(
β̃
−1
λ̂ (b)

))
db (27)

If λ̂ > 0, then β̃
−1

λ̂ (b) < 1 for all b < 1. Therefore,

∂2

∂λ2Ru(λ, βλ̂) < 0, (28)
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so that Ru (λ, βλ̂) and Πu(λ, βλ̂, q) are strictly concave in λ. By definition,

ξ (λ) =

∫ 1

0

(
1−G

(
β̃
−1

λ (b)
))

e
−λ
(

1−G
(
β̃
−1
λ (b)

))
db.

The continuity of ξ (λ) and its other properties follow directly from this functional

form and the properties of β̃
−1

λ . This proves the claim.

7.3 Proof of Claim 8: Comparison of PO and PU scenarios

Part (i): By revenue equivalence, Ro(λ) = Ru(λ, βλ) for every λ. Hence,

d

dλ
Ro(λ) =

d

dλ
Ru(λ, βλ) =

∂

∂λ
Ru(λ, βλ̂)λ̂=λ︸ ︷︷ ︸

=ξ(λ)

+
∂

∂λ̂
Ru(λ, βλ̂)λ̂=λ.

Now, using (26),

∂

∂λ̂
Ru(λ, βλ̂)|λ̂=λ =

(
∂

∂λ̂

∫ 1

0

[1− e−λ
(

1−G
(
β̃
−1
λ̂ (b)

))
]db

)
|λ̂=λ

= −
∫ 1

0

λg
(
β̃
−1

λ (b)
) ∂

∂λ
β̃
−1

λ (b)e
−λ
(

1−G
(
β̃
−1
λ (b)

))
db,

and from (7),

∂

∂λ
β̃
−1

λ (b) = −
∂
∂λ
βλ (v)

∂
∂v
βλ (v)

= −
∫ v

0
(G (v)−G (x)) e−λ(G(v)−G(x))dx

λg(v)
∫ v

0
e−λ(G(v)−G(x))dx

< 0,

where v = β̃
−1

λ (b). Therefore, we have ∂

∂λ̂
Ru(λ, βλ̂)λ̂=λ > 0 for all λ, which implies

Part (i) of the claim.

Part (ii): We have

Ru (λ, βλ) =

∫ λ

0

∂

∂t
Ru(t, βλ)dt > λ

∂

∂λ
Ru(λ, βλ̂)λ̂=λ, (29)

since (28) implies that ∂
∂t
Ru(t, βλ) is strictly decreasing in t. Since by revenue

equivalence Ru (λ, βλ) = Ro (λ), for all λ, it follows from (29) that

Ro (λ)

λ
>

∂

∂λ
Ru(λ, βλ̂)λ̂=λ.
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The claim then follows from so = max Ro(λ)
λ

and su = max ∂
∂λ
Ru(λ, βλ̂)λ̂=λ.
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9 Online Appendix

This appendix is not intended for publication. It contains the proofs for Section 6

(discussion and extensions).

9.1 Welfare

Claim 20 (i) For any Λ, there is λ > Λ such that Uo(λ) < R′o(λ). (ii) There is

λ̃ > λ such that Uo(λ) ≥ R′o(λ) for λ ≤ λ̃ and Uo(λ) < R′o(λ) at least over some

interval just above λ̃.

Proof: Obviously, Ro(λ) is also the residual surplus not received by the bidders,

Ro(λ) = T (λ)− λUo(λ),

and Ro(λ)→ T (λ) as λ→∞.
(i) If there is Λ such that Uo(λ) > R′o(λ) for all λ ≥ Λ, then, by (15), for all such

λ, T (λ)−Ro(λ) > T (Λ)−Ro(Λ) > 0, which contradicts the fact that Ro(λ)→ T (λ)

as λ→∞.
(ii) By (15),

R′o(λ) = −λU ′o(λ) = λ

∫ 1

0

e−(1−G(v))λ[1−G (v)]2dv (30)

and

Uo(λ)−R′o(λ) = Uo(λ) + λU ′o(λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)] [1− (1−G (v))λ] dv.

(31)

Therefore,

R′′o(λ) = −U ′o(λ)− λU ′′o (λ) =

∫ 1

0

e−(1−G(v))λ[1−G (v)]2dv (32)

−λ
∫ 1

0

e−(1−G(v))λ[1−G (v)]3dv

=

∫ 1

0

e−(1−G(v))λ[1−G (v)]2 [1− (1−G (v))λ)] dv.
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Recall that R′o(λ) is single-peaked and let λ denote the argument of the peak.

Thus, R′′o(λ) = 0, and it follows from (32) that there must be x such that (1−G (x))λ =

1, so the integrand on the RHS of (32) is positive for v > x and is negative for v < x.

Therefore,

0 = R′′o(λ) <

∫ x

0

e−(1−G(v))λ[1−G (x)][1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

+

∫ 1

x

e−(1−G(v))λ[1−G (x)][1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

= [1−G (x)]

∫ 1

0

e−(1−G(v))λ[1−G (v)]
[
1−

(
1−G (v))λ

)]
dv

= [1−G (x)][Uo(λ)−R′o(λ)].

The first inequality follows from 1−G (x) < 1−G (v) for the range v < x where the

integrand is negative, and from 1−G (x) > 1−G (v) for the range v > x where the

integrand is positive; the last equality follows from (31). Therefore, Uo(λ) > R′o(λ).

Since Uo is decreasing and R′o is increasing for λ < λ, it follows that Uo(λ) > R′o(λ)

for all λ ≤ λ. This and Part (i) imply that Uo and R′o first intersect at some λ̃ > λ.

�

9.2 Proof of Claim 18: Reserve price

Obviously, r∗ satisfies dΠo(λ
∗
o(r),q∗(r);r)
dr

|r=r∗ = 0. Observe that

dΠo(λ
∗
o(r), q

∗(r); r)

dr
=

d

dr

[
Ro(λ

∗
o(r); r)−

s

q∗(r)
λ∗o(r)

]
=

(
∂Ro(λ

∗
o(r); r)

∂λ
− s

q∗(r)

)
λ∗o(r)

dr
+

λ∗o(r)s

(q∗(r))2

dq∗(r)

dr
+
∂Ro(λ

∗
o(r); r)

∂r

=
λ∗o(r)s

(q∗(r))2

dq∗(r)

dr
+
∂Ro(λ

∗
o(r); r)

∂r
,

where the first term on the second line vanishes because it is the first-order condition

with respect to λ. Also observe that, using integration by parts,

Ro(λ; r) = 1− e−λ(1−G(r))[r − 1−G(r)

g(r)
]−
∫ 1

r

e−(1−G(b))λ

[
b− 1−G(b)

g(b)

]′
b

db,
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and therefore

∂

∂r
Ro(λ; r) = −g(r)λe−(1−G(r))λ

[
r − 1−G(r)

g(r)

]
.

Hence, ∂
∂r
Ro(λ; r) = 0 iff and only if r = rmax.

Now if λ∗o(r
∗) < λ

c
(r∗), then q∗(r) = 1 in a neighborhood of r∗. Hence dq

∗(r)
dr
|r=r∗ =

0 and
dΠo(λ

∗
o(r), q

∗(r); r)

dr
=
∂Ro(λ

∗
o(r); r)

∂r
.

Therefore, dΠo(λ
∗
o(r),q∗(r);r)
dr

= 0 if and only if r = rmax, implying r∗ = rmax.

If λ∗o(r) = λ
c
(r), then dq∗(r)

dr
is obtained from total differentiation of the first-order

condition with respect to λ, ∂Ro(λ
∗
o(r);r)
∂λ

− s
q∗(r) = 0. Thus,

dq∗(r)

dr
= −

∂2Ro(λ
∗
o(r);r)

∂λ2
dλ∗o(r)
dr

+ ∂2Ro(λ
∗
o(r);r)

∂λ∂r
s

(q∗(r))2
.

Now, dλ
∗
o(r)
dr

= dλ
c
(r)
dr

= −
∂Uo(λ

∗
o(r);r)

∂r
∂Uo(λ

∗
o(r);r)
∂λ

< 0 and ∂2Ro(λ
∗
o(r);r)

∂λ2
< 0 from the second-order

condition of profit-maximization with respect to λ. Furthermore, at r = rmax both
∂2

∂λ∂r
Ro(λ; r) = 0 and ∂Ro(λ

∗
o(r);r)
∂r

= 0. Therefore, at r = rmax,

dΠo(λ
∗
o(r), q

∗(r); r)

dr
= λ∗o(r)

∂2Ro(λ
∗
o(r); r)

∂λ2

∂Uo(λ
∗
o(r);r)
∂r

∂Uo(λ
∗
o(r);r)
∂λ

< 0,

implying that r∗ 6= rmax. This finishes the proof.

9.3 Proof of Claim 19: Bidders learn their value before en-

tering

Part (i): In both scenarios, vi(s) → 1 as s → 0. Therefore, the entry condition

ve−λ = c for both scenarios implies lims→0 λi(s)=− ln c.

Part (ii): For a given s, the respective equilibria (with trade) of the two scenarios

satisfy the first-order conditions ∂Π0(λo(s), vo(s))/∂λ = 0 and ∂Πu(λu(s), vu(s), λ̂)/∂λ|λ̂=λu(s) =

0, where

∂Ro(λo(s), vo(s))/∂λ =
s

1−G(vo(s))
(33)
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and

∂Ru(λo(s), vo(s), λ̂)/∂λ|λ̂=λo(s)
=

s

1−G(vu(s))
. (34)

Thus, in each of the scenarios, the total recruiting cost is

λi(s)
s

1−G(vi(s))
= λi(s)∂Ri/∂λ. (35)

By revenue equivalence, Ro(λ, v) and hence ∂Ro(λ, vo)/∂λ are the same as they

would be with SPA. Therefore,

∂Ro(λ, v)/∂λ = λve−λ +

∫ 1

v

((
(1−G (b))

1−G (v)

)2

λe−
(1−G(b))
1−G(v) λ

)
db.

Since vo(s)→ 1 as s→ 0, we have lims→0 ∂Ro(λo(s), vo(s))/∂λ = lims→0 λo(s)e
−λo(s) =

−c ln c. Therefore, lims→0 λo(s)
s

1−G(vo(s))
=(ln c)2c.

The inequality in Part (ii) of the claim will follow from lims→0 λi(s)=− ln c and

(35) after establishing

lim
s→0

∂Ru(λ, v, λ̂)/∂λ|λ̂=λ < lim
s→0

∂Ro(λ, v)/∂λ. (36)

This follows from observing that, by revenue equivalence, Ro(λ, v) = Ru(λ, v, λ) and

hence

∂Ro(λ, v)/∂λ = dRu(λ, v, λ)/dλ = ∂Ru(λ, v, λ̂)/∂λ|λ̂=λ + ∂Ru(λ, v, λ̂)/∂λ̂|λ̂=λ.

Then, by adapting the arguments used in Subsection 3.2, it can be shown that

lim
v→1

∂Ru(λ, v, λ̂)/∂λ̂|λ̂=λ =

lim
v→1

∫ 1

0

[
e−λ[1−G(β−1(b;v,λ))]/[1−G(v)]

] (G(β−1(b; v, λ))−G (v)
)

(1−G (v))
db > 0,

which implies (36) and hence Part (ii) of the claim.
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