
Optimal Taxation and Social Networks

Marcelo Arbex� and Dennis O�Deay

February 25, 2011

Abstract

We study optimal tax policy in a model economy where workers �nd their jobs from
their peers in a social network. The unemployment rate is determined by the dynamic of
the labor market, which is governed by the social network. Unemployment results as in-
dividuals are unsuccessful in hearing about job opportunities themselves or through their
peers in a network. The design of optimal tax policy follows the Ramsey approach. The
optimal limiting capital tax rate is zero, independent of the labor market frictions. The
optimal labor income tax is decreasing in the unemployment rate and the job network
process parameters play an important role in determining optimal �scal policy. We allow
agents to invest some of their time on building links and connect to peers (endogenous
network). The optimal tax is negatively related to the transmission rate of job informa-
tion from peers in a particular network and it is lower in more connected job network
economies.
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1 Introduction

The importance of social networks in labor markets has long been understood. Networking

plays a critical role in job searching and in improving the quality of the match between �rms and

workers. The job network literature indicates that access to information about job opportunities

is heavily in�uenced by social structure and that individuals use connections with others (e.g.,

relatives, friends, acquaintances) to build and maintain information networks.1 Social networks

have important implications for the dynamics of employment, as well as, the duration and

persistence of unemployment (Calvó-Armengol and Jackson, 2004). As networks might a¤ect

economic outcomes, the relevance of social networks for the design of government policies must

be recognized and explored.

The literature on optimal labor income taxation, however, has neglected the role of social

networks in the labor market and has mainly focused on competitive or job search labor mar-

kets. Empirical research indicates that about half of jobs are obtained through networking

and the other half are obtained through more formal methods (see Holzer, 1988; Montgomery,

1991; Topa, 2001, Gregg and Wadsworth, 1996; Addison and Portugal, 2001). Well-known

results in the theory of optimal labor taxation are that tax rates on labor should be roughly

constant, i.e., the optimal labor income tax rates are constant across time and states (Barro,

1979; Kyndland and Prescott, 1980; Chari and Kehoe, 1999), and labor taxes vary positively

with employment (Zhu, 1992; Scott, 2007). In this paper we examine if these results survive

when the labor market is governed by job networks.

We study optimal tax policy in a model economy where the informational structure of

the job networking follows the classic epidemic di¤usion model, surveyed recently in Vega-

Redondo (2007). We apply the mean �eld approach, which assumes there are no correlations

or neighborhood e¤ects in information transmission, and a network is described by a degree

distribution. Our approach amounts to assuming the average state of the network is replicated

locally, for every agent, so that the proportion of an agent�s peers who are employed is given by

the employment rate. The mean-�eld approach is analytically simple and allows us to calculate

well the long-run, average behavior of arbitrary networks, including power-law distributions and

networks with the �small-worlds�properties of low diameter and high clustering. As expected,

1See Granovetter (1995) and Ioannides and Loury (2004) for a recent survey.
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our model predicts that changes in the social network structure will alter the unemployment

rate. For instance, an increase in the density of social ties generates lower unemployment level.

Information about job opportunities arrives randomly. All jobs are identical and the job

arrival process is independent across agents. If the agent is unemployed, she will take the job.

On the other hand, if the agent is already employed then he may pass the information along

to a friend, relative or acquaintance who is unemployed. Each agent is connected to others

through a network. Workers without jobs are in competition for the job information that their

peers may pass them. The strength of social ties among workers determines the probability

their peers pass job information along.

Unemployment results when individuals are unsuccessful in hearing about job opportunities

themselves or through their peers in a network. Agents do not know the employment status

of their peers and job information cannot be passed on if it is not needed; in this sense job

information may be lost. The employment rate is then determined by the dynamic of the

labor market, which is governed by the social network. That is, the �ow of agents between

employment and unemployment status depends on the job arrival and break-up probabilities

and a worker�s social network contacts. We will consider several di¤erent classes of network,

and investigate their properties.

There are at least three main reasons for studying optimal labor income taxation in this

environment. First, one of the most robust and best-studied roles of social networks concerns

obtaining employment. There have been a number of studies of how social contacts matter in

obtaining information about job openings. Second, labor income tax rates vary substantially

over time and across countries and high labor taxes are often seen as one of the causes of high

unemployment rates. And, third, our extensions to the speci�c models used by Lucas and

Stokey (1983) and Chari, Christiano and Kehoe (1991), with the addition of social networks,

enable us to provide a new insight into the relationship between taxes and the labor market

dynamics.

This paper embeds the job network model into the general equilibrium framework and

the design of optimal tax policy follows the Ramsey approach. This approach to optimal

taxation is a solution to the problem of choosing optimal taxes given that only distortionary tax

instruments are available. A social planner maximizes its objective function given that agents
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are in a competitive equilibrium and the optimal path of the planner�s �scal instruments are

obtained such that the agent�s utility is maximized. We follow the majority of the literature

in assuming that there are institutions that e¤ectively solve the time inconsistency problem so

that the government can commit to its announced policy.

Our analysis proceeds in three stages. First, we characterize the long-run unemploy-

ment rate in the economy, as function of the underlying social network, and job transmission

processes. Second, we consider an economy with a representative in�nitely lived household.

Each household consists of a continuum of family members, which either work or are un-

employed. Employed workers receive a wage that is determined competitively, while agents

without a job receive an unemployment bene�t. Unemployed workers do not search for a job

but rather learn about job opportunities through peers in their social network. Family mem-

bers without a job can spend time to develop their social connections, increasing the strength

of their ties to their peers. A stronger connection to their peers results in more job information

from their employed peers, and will improve their chances of �nding a job while unemployed.

We assume that the time devoted to social networking a¤ects the job transmission rate. That

is, the rate at which job information is passed from employed workers to his unemployed peers

in any period depends on how much e¤ort agents spent on social networking in the previous

period. This network e¤ort intensity represents an additional trade-o¤ for the agents. It im-

proves their chances to become employed but at a (leisure) cost. Once a worker �nds a job,

he is beyond the social network dynamics and no e¤ort is devoted to improve social contacts.

We derive the optimal labor income tax and show that, under some conditions, the Ramsey

optimal policy consists in making the labor income tax decreasing in the unemployment rate.

Finally, we explore how di¤erent aspects of social networks can a¤ect the design of the optimal

tax policy via the determination of the unemployment rate in this economy.

Regardless the structure of the social networks and the dynamics of the labor market, the

optimal limiting capital tax rate is zero as in Chamley (1986) and Judd (1985). The main reason

for this result is that �rms in our economy take the number of workers as given and choose

optimally only the hours worked by these workers. If we had assume that �rms could a¤ect the

employment rate we would be moving closer to the labor search literature. Domeij (2005) �nds

that the capital tax would be non-zero as long as the workers bargaining power is di¤erent
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than the elasticity of search in the matching function. In our model, if we endogenized the

probability that an agent hears about a job opening, instead of the job information transmission

rate, we would be able to replicate this same result.

In our economy, labor taxation is directly related to the unemployment rate, and so indi-

rectly determined by the structure and properties of the job network. Although the government

does not observe how job information is passed from one worker to another, and here we are

not arguing that it should, it should recognize the relevance of job networks for the design

of the optimal labor income tax, through their impact on the determination of the economy�s

equilibrium unemployment rate. In other words, the introduction of labor market frictions

through job networks implies that the optimal tax policy should feature some response to

unemployment. We show that labor income taxes vary negatively with unemployment and

there is a positive relationship between labor income taxes and hours worked. Labor is more

inelastically supplied when employment is high and, since the Ramsey planner is required to

tax inelastic variables more heavily to minimize tax distortions, labor income tax rates vary

positively with hours worked (Zhu, 1992; Scott, 2007).

At the steady state, the number of newly employed agents is exactly equal to the number of

newly unemployed agents, and the economy will remain at this level of employment inde�nitely.

This long run prevalence of employment we take to be the economy�s employment rate. This

in turn de�nes the steady state unemployment rate. This steady state unemployment rate is

decreasing in the job arrival probability, the job information transmission probability, and is

increasing in the job break up probability. Since the optimal labor income tax is decreasing in

the unemployment rate, it is positively related to the transmission rate of job information from

peers in a particular network. In less connected economies, the unemployment is ine¢ ciently

high and the planner faces a tradeo¤ that calls for responding to unemployment (which reduces

households�welfare) by reducing labor income taxation. We show that the optimal income tax

is higher in more connected job network economies.

The paper proceeds as follows. In section 2, we present the model economy and characterize

a labor market dynamics governed by social networks and exogenous job separation. We discuss

how the unemployment rate is a¤ected by job networking where the informational structure

of the job networking follows the classic epidemic di¤usion model. Section 3 and 4 studies the
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economy in steady state. We �rst characterize the long run employment in di¤erent network

structures and then derive the optimal labor tax as function of the unemployment rate. We

show shows how job networking can a¤ect the optimal labor tax via the unemployment rate,

when this rate is exogenously given in the agent�s problem or it is a¤ected by agent�s e¤ort to

strength social ties. Section 6 concludes.

2 The Model Economy

There is a continuum of in�nitely lived agents whose total measure is normalized to one. The

economy is populated by households who consume, save and work. Each agent can be either

employed or unemployed. Employed workers receive a wage that is determined competitively,

while agents without a job receive an unemployment bene�t. The labor market is characterized

by social networks, meaning that unemployed workers learn about job opportunities through

peers in their social network. The informational structure of the job networking follows the

classic epidemic di¤usion model, surveyed in Vega-Redondo (2007). The �ow of agents between

employment and unemployment status depends on a worker�s social network contacts and on

an exogenous job separation rate. We consider the role of social networks as a manner of

obtaining information about job opportunities and study its implications for the dynamics of

employment and the structure of optimal capital and labor income taxation.

2.1 Network Structure and Employment Rate Determination

There are two classes of agents in this economy: employed and unemployed workers. Time

evolves in discrete periods indexed by t and information about job opportunities arrives ran-

domly. All jobs are identical and the job arrival process is independent across agents. Each

agent hears about a job opening with probability 
 2 [0; 1]. If the agent is unemployed, she

will take the job. On the other hand, if the agent is already employed then she may pass the

information along to a friend, relative or acquaintance who is unemployed. The rate at which

an employed worker passes information to each of her unemployed peers is given by v 2 [0; 1].

We will elaborate more on this transmission rate when we present the household problem. The

rate v is distinct from 
, and need not be directly derived from it. Let � be the exogenous job
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break up probability, which is independent across agents.

Each agent may have peers to whom she passes information when employed, and from whom

she may receive information when unemployed. These peers are connected to one another in a

social network. A network is described by a symmetric matrix M , where mij 2 f0; 1g denotes

whether a link exists between agents i and j. That is, mij = 1 indicates that i and j know

each other and mij = 0 otherwise. We assume that mij = mji, meaning that the relationship

between i and j is reciprocal. The structure of this network m will determine how information

�ows throughout the network, and will have a large impact on each agent�s employment status.

We are concerned with large networks, that is, a network among the continuum of agents,

so that there are in�nitely many nodes in this network. A key property of a network is its de-

gree distribution fDzg1z=1, where Dz is the proportion of agents who have z peers. A network�s

degree distribution summarizes much of its structure: whether there a some workers with many

links, or not, and the relative prevalence of highly connected workers.2 In general, there may be

many networks m consistent with a particular degree distribution fDzg1z=1. As networks grow

large, much local information ceases to matter, so focussing on degree distributions is appro-

priate (Vegas-Redondo 2007). In other words, we are not concerned about particular network

structures but rather focus on large classes of networks sharing the same degree distribution.

We may think of the actual networkm as being a random draw from the set of networks having

degree distribution fDzg1z=1. This is called the random network approach. In particular, we

study the empty, regular, power-law and geometric degree distributions.

The employment rate may be di¤erent for agents with di¤erent number of links (peers) z.

The average employment rate can then be expressed as follows:

nt =

Z 1

z=1

(nztDz) dz;

where nzt is the employment rate among agents with z links. Agents who have more links

may expect to hear about jobs from their peers more often, and their employment status will

evolved di¤erently than that of an unemployed agent with fewer links.

To analyze the dynamics of employment, we apply the mean �eld approach, which assumes

2Some important network properties, however, are not captured by the degree distribution, such as detailed
local structures and clustering. For example, if workers who have a common peer are also likely to be connected
themselves, this fact will not be captured by the degree distribution.
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there are no correlations or neighborhood e¤ects in information transmission. Our approach

amounts to assuming the average state of the network is replicated locally, for every agent, so

that the proportion of an agent�s peers who are unemployed is given by the unemployment rate

(Vega-Redondo 2007).3 The mean �eld approach relies on an assumption of homogenous mixing,

i.e., there are no systemic di¤erences between each worker�s local neighborhoods. This could

be justi�ed by imagining that a worker with z links does not have the same peers period after

period, but continually draws new peers, randomly from the network. In that case, because

the network is large, he could not infer anything about their employment status beyond the

average in the network, and the mean-�eld approach is correct. Even without that formal

assumption, the mean �eld approach has been shown in simulations to give good answers for

the long-run dynamics in the networks we will consider (Vega-Redondo 2007, Jackson 2008).

Following the mean-�eld approach, and suppressing the subscript t when there is no con-

fusion, we can determine the law of motion for employed workers as follows:

_nz = ��nz + (1� nz)[
 + (1� 
)(1� (1� v�)z)] (1)

where employment is given by total labor force, normalized to one, minus the number of

unemployed workers, i.e., nt = 1 � ut. The change in the level of employment has three

main components. First, � percent of agents who are employed will lose their jobs. Second, a

fraction 
 of the unemployed agents will hear of a job themselves. Third, of those unemployed

workers who do not hear of a job opportunity themselves, each of their z peers is employed

with probability �, and passes job information at rate v; the probability that at least of of

their z peers passes them information is (1� (1� v�)z). We will consider v exogenous for the

moment, but will late require workers to invest time and e¤ort into maintaining their social

relationships, so that v is a function of e¤ort, et.

The probability an unemployed worker�s peers are employed (�) will also depend on the

employment status of the network as a whole. According to the mean �eld approach, we can

3This is not necessarily true, in general. Calvo-Armengol and Jackson (2004) showed that each worker�s
employment status is correlated with that of his peers, so an agent who remembers his past status could infer
the expected employment rates of his peers, and this need not be equal to the average state of the network.
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de�ne this probability in the following way:

� =

Z 1

z=1

(nz z) dz; (2)

where  z is the probability an agent�s peer has z links, which is given by

 z =

Z 1

z=1

�
zDzR1

z=1
(zDz) dz

�
dz =

Z 1

z=1

�
zDz

hzi

�
dz;

where hzi =
R1
z=1
(zDz) dz is the average degree in the network. Note that  z 6= Dz, i.e., the

probability your peers have z links is not equal to the proportion of the population that has z

links. This is because agents with many peers, and a large z, are disproportionately likely to

be your peers. Plugging  z into the de�nition of �, equation (2), we have

� =
1

hzi

Z 1

z=1

(znzDz) dz:

This implies that the probability an agent�s peers are employed (�) depends on the average

degree in the network hzi, the number of links each of these peers have, z, the proportion of

agents who have z peers (Dz) and the employment rate among agents with z links (nz).

Hence, in this economy the employment rate nt follows a stochastic process and it is a

function of the state of the network S, represented by the break-up probability (�), the job

arrival probability (
), the job transmission rate (v) and the degree distribution (Dz). More-

over, as the job transmission rate will depend on the time allocated to social networking et, the

employment rate is also a¤ected by agents�allocation decisions, which we discuss in details in

the next section.

2.2 Households and Firms

In a typical household there is a measure nt of employed family members and a measure

1 � nt of unemployed individuals. Employed members supply labor hours lt and unemployed

members spend time et in developing their social connections, increasing the strength of their

ties to their peers. A stronger connection to their peers results in more job information their

employed peers, and will improve their chances of �nding a job while unemployed.
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We assume that the time devoted to social networking a¤ects the job transmission rate.

That is, the rate at which job information is passed from employed workers to his unemployed

peers in time t depends on how much e¤ort (et�1) agents spent on social networking in period

t � 1, i.e. v = v(et�1). The job transmission rate is determined according to the following

decreasing returns to scale relationship technology:

v(et�1) = e1��t�1 ;

where � measures the e¢ cacy of this technology. When � is close to 1, workers are able to build

strong relationships with relatively little cost, in terms of time and foregone leisure. When �

is close to 0, maintaining social relationships is more di¢ cult, and requires a greater invest of

time. The e¤ort intensity e represents an additional trade-o¤ for the agents. It improves their

chances to become employed but at a (leisure) cost. Once a worker �nds a job, he is beyond

the social network dynamics and no e¤ort is devoted to improve social contacts. Viewing v as

a function of the investment in social ties implies that the entire long run level of employment

in the economy is also a function of it, i.e., nt = n(et�1).

Preferences are represented by the following utility function

U =
1X
t=0

�tu(ct; ht) (3)

where the momentary utility function u is increasing, concave and di¤erentiable and � is the

discount rate which lies in (0; 1). The variable ct is family consumption and the time endowment

is normalized to 1 so that leisure is ht = 1� n(et�1)lt � (1� n(et�1))et.

The timing of the model is as follows. At the beginning of each period, unemployed family

members choose howmuch time they invest on social network e. Next employed family members

- those that started the period with a job and those that just heard about and got a job - choose

l. Then goods consumption c is determined. Households have two options with output they

do not consume: they can invest in capital (k) or purchase government bonds (B). Next,

employed family members are paid a wage (w) for the labor services, the unemployed receives

unemployment bene�ts (b) and the family receives (tax free) interest (R) earnings on bonds

and rental rate (r) of capital. The household takes as given government determined tax rates
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on labor (� l) and capital (� k) income. As in Calvó-Armengol and Jackson (2004), we interpret

the timing as one where job break-up occurs, essentially, at the beginning of the period.

The sequence of real budget constraints reads as follows

ct + kt+1 +Bt+1 = n(et�1)(1� � lt)wtlt + (1� n(et�1))bt + (1� � kt )rtkt + (1� �)kt +BtRt (4)

where � is the rate at which capital depreciates each period, Rt and rt are the real rate of

return on bonds and capital, respectively, and

nt = n(et�1) =

Z 1

z=1

(nz(et�1)Dz) dz;

where nz(et�1) is the employment rate among agents with z links in period t. The total

household income is divided evenly among all individuals, so that family member perfectly

insure each other against variation in labor income (Domeij, 2005). Or, alternatively, we can

assume that agents can insure themselves against earning uncertainty and unemployment and,

for this reason, wage earnings are interpreted as net of insurance costs (Merz, 1995; Andolfatto,

1996; Faia, 2008). Employed and unemployed family members consume the same amount and

capital allocation and bonds purchase is a family decision.

Firms produce a single good and maximize pro�t taking factor prices as given. Production

technology is a constant returns Cobb-Douglas speci�cation so that output (y) is4

yt = F (kt; lt) = (kt)
� (n(et�1)lt)

1�� (5)

where � 2 (0; 1) is the capital income share. Firms operate under perfect competition and

earn zero pro�ts in equilibrium. Factors of production are paid their marginal products, i.e.

Fk(t) = rt = � (kt)
��1 (n(et�1)lt)

1�� and Fl(t) = wt = (1��) (kt)� (n(et�1)lt)�� n(et�1), where

Fk(t) and Fl(t) denote the marginal product of capital and labor, respectively, and rt is the

rental rate of capital and wt the wage rate for labor. Our speci�cation of the technology is

in line with the approach presented in Chari, Kehoe and McGrattan (2001). Di¤erently than

models of search that allow �rms to in�uence the number of workers to be hired, through for

4Here we specify the production function although we keep utility function general. We will analyze how
di¤erent preferences a¤ect optimal taxation.
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instance the number of vacancies posted (Domeij, 2005), here the number of workers employed

nt is entirely de�ned by the dynamics of the network and workers� time allocation decision

process.

2.3 The Government and Aggregate Resources

The government faces the budget constraint

gt + (1� n(et�1))bt = n(et�1)�
l
twtlt + � kt rtkt +Bt+1 �BtRt: (6)

where gt denotes government consumption, which is assumed to be exogenously speci�ed.

The government �nances its expenditures by levying taxes on labor and capital and issuing

government bonds.

The economy as a whole faces the following aggregate resource constraint

ct + kt+1 + gt = F (kt; lt) + (1� �)kt: (7)

2.4 The Network Competitive Equilibrium

A representative household, taking prices, taxes and the social network structure as given,

chooses fct; kt+1; lt; et; Bt+1g to solve

max
fct;kt+1;lt;et;Bt+1g

1X
t=0

�tu(ct; ht) (P.1)

subject to

(1) ct + kt+1 +Bt+1 = n(et�1)(1� � lt)wtlt + (1� n(et�1))bt + Ttkt +BtRt for all t � 0;

(2) nz(et) = (1� �)nz(et�1) + (1� nz(et�1))[
 + (1� 
)(1� (1� v(et�1)�)
z)] for all t � 0;

(3) k0; B0; and n0 given:

where Tt = [1 + (1 � � kt )(rt � �)] is the gross return on capital after taxes and depreciation

and nz(et) is the employability rate of an agent who has z peers in period t + 1 (nz;t+1). Let

u(t) = u(ct; ht) and likewise for ui(t), where i = 1 for consumption and i = 2 for leisure. The
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equilibrium conditions form the family�s problem can be represented as

u2(t) = u1(t)(1� � lt)wt (8)

Rt = (1� � kt )rt + (1� �) (9)

(1� n(et�1))u2(t) = �n0(et�1)
�
u1(t+ 1)

�
(1� � lt+1)wt+1lt+1 � bt+1

�
� u2(t+ 1)(lt+1 � et+1)

�
(10)

Equation (8) is the standard equation showing how income labor tax a¤ects the labor-

leisure choice and equation (9) is the no-arbitrage condition for capital and bonds. Equation

(10) states that the utility cost of network e¤ort (LHS) equals the discounted (expected) gain

from successfully �nding a job, where the gain of one additional worker equals the additional

consumption gain in period t+1 less the leisure cost of working and not spending time in social

networking.

A network competitive equilibrium is a policy � = f� lt; � kt g1t=0, government spending
�G = fgt; btg1t=0, household�s allocations x = fct; kt+1; lt; et; Bt+1g1t=0, a price system �P =

fwt; rt; Rtg1t=0 and the state of the network variables f�; 
; v;Dzg such that given the policy,

government spending, the price system and the state of the network, the resulting household�s

allocation choice maximizes the consumer�s utility and satis�es the government�s budget con-

straint, the economy�s resource constraint and market clearing conditions.

2.5 Ramsey Equilibrium

At the beginning of each period, the government announces its program of tax rates and

individuals behave competitively. The objective of the social planner is to choose values of

its �scal instruments such that the agent�s utility is maximized. The problem is constrained

by the households�and �rm�s optimization behavior and by the budget of the government.

The status of the network, re�ected in the economy�s employment rate, also constrains the

planner�s problem. The social planner does not directly control the agent�s allocations, and

the problem is of second-best because the social planner chooses the �scal instrument that

satis�es the optimization restrictions of the private agent, i.e. the �rst-order conditions of

the private agent�s problem. The planner only observes the result of the network process and

cannot in�uence it.
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The Ramsey problem is a programming problem of �nding optimum within a set of allo-

cations that can be implemented as a competitive equilibrium with distorting taxes. In other

words, the Ramsey problem is to choose a process for tax rates f� lt; � kt g, which maximizes social

welfare and satis�es (4) and an implementability constraint (see Chari and Kehoe, 1999). In

this paper the unemployment bene�t is exogenously given and the planner does not choose

it optimally. We follow the majority of the literature in assuming that the government can

commit to follow a long-term program for taxing labor income. We assume that there are

institutions that e¤ectively solve the time inconsistency problem so that the government can

commit to the tax plan it announces in the initial period.

To derive the implementability constraint, we use family�s �rst order conditions and the

intertemporal budget constraint, which yields the following expression (see Appendix for deriva-

tion details):

1X
t=0

�t
�
u1(t) (ct � bt)� u2(t)n(et�1)(lt � et)� u2(t)(1� n(et�1))

n(et)

n0(et)

�
= A0 (11)

where A0 = u1(0)
�
n(e�1)(1� � l0)w0l0 � (1� n(e�1))b0 + T0k0 +R0B0

�
+ u2(0)n(e�1)(l0 � e0).

A Ramsey equilibrium in this economy is a policy �, an allocation rule x and a price rule

�P that satisfy the following two conditions: (i) the policy � maximizes (3) subject to the

government budget constraint (6) and the state of the network f�; 
; v;Dzg with allocations

and prices given by x and �P and (ii) for every �0, the allocation x(�0), the price rule �P (�0)

and the policy �0 constitute a network competitive equilibrium.

Proposition 1 The household�s allocations and the date 0 policy �0, in a network competi-

tive equilibrium satisfy the economy�s resource constraint (7), the law of motion for employed

workers (1), the implementability constraint (11) and a constraint on labor income taxes

u1(t+ 1)bt+1 � u2(t+ 1)et+1 + u2(t)
1� n(et�1)

n0(et)
= 0 (12)

Furthermore, given household�s choices and �0, prices and policies can be constructed for

all dates, which together with the choices and date 0 policies constitute a network competitive

equilibrium.

Proof. See Appendix.
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The planner�s maximization problem can thus be written as follows:

max
fct;kt+1;lt;etg

1X
t=0

�tu(ct; 1� n(et�1)lt � (1� n(et�1))et) (P.2)

subject to

(i)
P1

t=0 �
t
�
u1(t) (ct � bt)� u2(t)n(et�1)(lt � et)� u2(t)(1� n(et�1))

n(et)
n0(et)

�
= A0

(ii) u1(t+ 1)bt+1 � u2(t+ 1)et+1 + u2(t)
1�n(et�1)
n0(et)

= 0

(iii) ct + kt+1 + gt = F (kt; lt) + (1� �)kt:

equation (1) and �g; � l0; �
k
0; k0; n0 given. The �rst order conditions of the planner�s problem

are not the same in the �rst period and subsequent periods which implies that this Ramsey

problem is non-stationary. Since our goal is to study this economy in the steady state, we will

focus our attention on the �rst-order conditions for period 1 and onwards. To save space, the

�rst-order conditions for period zero are not presented.

3 Long Run Employment in Networks

In this section, we study the economy in a steady state. Assuming that the economy converges

to a steady state implies that the change in the level of employment for each type of work is

equal to zero, i.e., _nz = 0 for all z. The number of newly employed agents of each type z is

exactly equal to the number of newly unemployed agents, and the economy will remain at this

level of employment inde�nitely. We consider this long run prevalence of employment to be

the economy�s employment rate (Vega-Redondo 2007). Setting _nz = 0 in equation (1), we �nd

that the steady state level of employment (n�z) satis�es

n�z(e
�) = 1�

�
�

1 + �� (1� 
)(1� ��v(e�))z

�
(13)

where e� is the steady state level of investment in social ties. According to equation (2), �� is

given by

�� =
1

hzi

Z 1

z=1

(zn�z(e
�)Dz) dz: (14)
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Together, the solution to these two equations for each k gives n�z, which can be used to de�ne

the long run steady state employment rate

n�(e�) =

Z 1

z=1

(n�z(e
�)Dz) dz; (15)

and the associated unemployment rate u�(e�) = 1 � n�(e�). Here it is interesting to observe

that the government takes as given the network dynamics, except the information transmission

rate which is a¤ected by the agent�s networking e¤ort. In choosing allocations, the planner

chooses the optimal network e¤ort e� that might be di¤erent depending on the kind of network

structure we are studying. For instance, less e¤ort might be optimal if agents are connected to

more peers and information �ows faster. This network e¤ort intensity represents an additional

trade-o¤ for the agents. While it improves their chances to become employed, it is a risky and

costly (in terms of leisure) investment.

The structure of the social network will in�uence the e¢ cacy of investment in social rela-

tionships, the ease with which employed workers �nd jobs, and the long run level of employment

in the economy. For di¤erent degree distributions Dz, the long run steady state employment

rate, equation (15), may have di¤erent solutions, with di¤erent characteristics and implications

for optimal labor tax.

We focus of several well known classes of large, complex networks. As a baseline, we consider

regular networks, that is, networks where every agent has the same number of peers, k. For

k = 0, this is the empty network, and may be taken as a worst case scenario, where each worker

must hear of a job themselves, at the exogenous arrival rate 
. For these networks, Dz = 1 for

z = k, and Dz = 0 for all other z, and every worker is exactly the same.

Regular networks are not very realistic, however, for the simple reason that they exhibit no

heterogeneity among workers and no large scale structure. We consider two alternative models

of large networks with heterogeneous workers, power-law and geometric degree distributions.

Many models of social networks described as deriving from linear growth in the number of

agents in a society, and preferential attachment in link formation as these agents arrive. In

these models, we imagine the network growing over time. Workers arrive and choose to form

some number of links to the workers already present in the network, with a preference for

having links to workers with many links already. This preference is easy to justify, as well
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connected peers are more likely to be employed themselves, and thus prove to be a valuable

source of job information. The limit of this process, as the number of workers goes to 1,

results in a power law degree distribution. A few workers end up with many, many links, while

most have relatively few. These networks have a number of attractive features, that match

well many empirical social networks (Vega-Redondo 2007, Jackson 2008). In the power-law

networks, the degree distribution has the following form: Dz = (a � 1)z�a. These networks

exhibit a thick tail, with a relatively high proportion of agents who have many links.

Geometric networks are derived from a similar growth process, but where agents do not

have a preference for links to agents with many links already. In this model, links are simply

formed randomly among those agents already present, and in the limit, the degree distribution

has the following form: Dz = log ��1�z. These networks have a thinner tail than power-law

networks.

Let nqz, �
q and nq denote the long run employment rate among agents with z links, the

probability an unemployed worker�s peers are employed and the economy�s employment rate

for a network q, respectively. We consider three classes of networks, namely, Regular (q = R),

Power-Law (q = PL) and Geometric (q = G). The employment rate of agents with k links in

a network q = R; PL and G is given by

n�qz (e) = 1�
�

�

1 + �� (1� 
)(1� �qv(e�))z

�
(16)

Table 1 presents the (steady state) expressions for �q and nq for each network considered

here.

Table 1 - Probability an unemployed worker�s peers are employed

and the economy�s employment rate for a network

�q nq

Regular 1
k
knRk (e) = nRk (e) nRk (e)

Power � Law 1
hzi
R1
z=1

�
znPLz (e)(a� 1)z�a)

�
dz

R1
z=1

�
nPLz (e)(a� 1)z�a

�
dz

Geometric 1
hzi
R1
z=1

�
znGz (e)�(e)

1�z log �
�
dz

R1
z=1

�
nGz (e)�(e)

1�z log �)
�
dz

The economy�s employment rate for a regular network nR is equal to the employment rate
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of the agents with k links, i.e., nR = nRk , where n
R
k is solution of the following expression:

n�Rk (e) = 1�
�

�

1 + �� (1� 
)(1� nRk (e)v(e
�))k

�
(17)

For the empty network, k = 0 and this expression simpli�es to nRk=0 = 
=(�+
). Unfortunately,

for the power-law and geometric networks, no closed form solution to this system of equations

(nqk; �
q) exists, and it must be characterized numerically.

For each of these possible networks, the behavior of unemployment with respect to the job

information process is straightforward. The unemployment rate is decreasing in both the job

opportunities arrival probability (
) and the e¤ort which an employed worker puts into passing

information to each of her unemployed peers (e). And, there is a positive relationship between

the exogenous job break up probability (�) and the equilibrium unemployment rate.

The equilibrium employment rate also depends on the average number of links k of agents

in the network; in networks with a higher k, there are more agents with a higher number of

peers, who have a higher (individual) employment rate. Employment is therefore higher for

more connected networks.

Furthermore, for any given set of parameters that characterize the state of the network,

we observe a much higher unemployment rate in a empty network than in the power-law and

geometric, and an even lower unemployment rate in regular networks, in particular for greater

number of links. In the case of power law and geometric networks, where there is heterogeneity

in the number of links workers have, the equilibrium unemployment rate is decreasing in the

number of links z that a particular worker has. For these networks, because of the presence

of workers with many many links, job information is disseminated more easily, which reduces

unemployment. However, in these network the distribution of links is very heterogenous -

we still can �nd people with few links. On the other hand, in a regular network everyone

has the same number of links and this homogeneity leads to higher steady state employment

rates. Power-law and geometric networks can be derived from a growing network process,

and are more consistent with empirical social networks, than the regular and empty networks

(Vega-Redondo 2007, Jackson 2008). The following proposition summarizes these results.

Proposition 2 For each network structure, the equilibrium level of employment n has the

following properties: (i) @n=@e � 0, (ii) @n=@
 � 0 and (iii) @n=@� � 0.
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Proof. See Appendix.

Figure 1 illustrates the relationship between e¤ort and the employment rate in di¤erent

network structures, where we use the following parameter values: 
 = 0:4, � = 0:4, � = 2:5,

� = 3, � = 0:6 and each network has the same average number links, k = 3. Figures 2

illustrates other properties of employment in di¤erent networks.
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Figure 2 - Job Arrival and Break-up Probabilities

and Employment Rate

4 Optimal Tax Rates

Next, we investigate the impact of network dynamics for the optimal labor income and capital

taxation. Suppose that the solution to the Ramsey problem converges to a steady state.

Let fc; k; l; eg and f�; �; �g denote the associated allocations and Lagrange multipliers on the

implementability constraint (11), condition (12) and resource constraint (7), respectively. We

19



will assume constant government spending over time, i.e. gt = g; t = 0; 1; : : : and write the

planner�s �rst-order conditions accordingly:

0 = (1 + �)u1 + �u11(c� b)� u21

�
�n(e)(l � e)� (1� n(e))

n0(e)
(�n(e)� �)

�
� � (18)

0 = �1 + � [Fk + (1� �)] (19)

0 = �(1 + �)u2 � �u12(c� b)� u22n(e)

�
�n(e)(l � e)� (1� n(e))

n0(e)
(�n(e)� �)

�
+ �Fl (20)

0 = �u2(1� n(e))

�
1� �

1

(1� n(e))
+ �

n(e)n00(e)

(n0(e))2
� �

n00(e)

(n0(e))2

�
(21)

� �u2n
0(e)

�
(1 + �) (l � e) + �

n(e)

n0(e)
� �

1

n0(e)

�
� u12 [n

0(e)(l � e) [��(c� b) + �b]� �(c� b)]

� u22(1� n(e))2
�
�n(e)(l � e)� (1� n(e))

n0(e)
(�n(e)� �)

�
� u22n

0(e)2(l � e)

�
�

�
�n0(e)(l � e)� (1� n(e))

n0(e)
[�n(e)� �]

�
+ �

�
+ ��Fln

0(e)l

Because the sharpest analytical results hold for the case of labor taxes this is the main

focus of our analysis. Notice however that the optimal limiting capital tax rate is zero as in

Chamley (1986) and Judd (1985). The steady-state version of no-arbitrage condition, equation

(9), becomes 1 = �
�
(1� � k)Fk + (1� �)

�
, which combined with equation (19), implies that

� k = 0. This result is obtained regardless the structure of the social networks and the dynamics

of the labor market. The main reason for this result is twofold. First, in our economy the capital

allocation decision is a family decision. That is, once it is determined the fraction of family

members that have a job or don�t the family decides what to do with the output they do not

consume. After the social network mechanism had play the role of determining the economy�s

employment rate, it is not optimal to tax capital as the economy because it distorts capital

and investment allocations. Second, �rms in our economy take the number of workers as given

and choose optimally only the number of hours worked by these workers. If we had assume

that �rms could a¤ect the employment rate we would be moving towards the labor search

literature. Domeij (2005) �nds that the capital tax would non-zero as long as the workers

bargaining power is di¤erent than the elasticity of search in the matching function. In our

model, if we endogenized the probability that an agent hears about a job opening 
, instead

of the job information transmission rate v, we would be able to replicate this same result.
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In our economy, labor taxation is directly related to the unemployment rate, and so indi-

rectly determined by the structure and properties of the job network. Although the government

does not observe how job information is passed from one worker to another, and here we are

not arguing that it should, it should recognize the relevance of job networks for the design

of the optimal labor income tax, through their impact on the determination of the economy�s

equilibrium unemployment rate.

We start our discussion about optimal labor taxation and social network by considering

the case where the network dynamics is completely exogenous. In this case, individuals and

family units cannot a¤ect the employment rate by their actions. This rate is determined by the

dynamics of the labor market, which is governed by social network. In our model presented in

Section 2; this implies shutting down the mechanism by which unemployed workers can invest

time to improve social ties and hear about job opportunities. Nevertheless, the unemployment

rate a¤ects agents�optimal behavior and agents take into account the proportion of family

members employed when they make decisions regarding consumption and leisure.

Rewriting the family�s and Ramsey�s problem to re�ect this exogenous nature of the network

dynamics (which will not be presented here for the sake of space and readability), we obtain

the following expression for the optimal labor income tax

� lt =
1

nt

�
� [H2(t)�H1(t)]� (1� nt) [(1 + �) + �H2(t)]

(1 + �) + �H2(t)

�
(22)

whereH1(t) � [u11(t)Ct � u21(t)(1� ht)] =u1(t),H2(t) � [u12(t)Ct � u22(t)(1� ht)] =u2(t), Ct =

(ct� (1� nt)bt) and � is the Lagrangian multiplier on the implementability constraint. Notice

that (22) is not an explicit expression for the optimal tax rate, since the H1, H2 depend on

endogenous variables.

The case of additively separable preferences is of particular interest because it allows us to

solve for the optimal labor tax analytically. To simplify the presentation consider a quasi-linear

utility function

U(ct; ht) = ln ct + � lnht (23)

When the utility function is additively separable (u12(t) = u21(t) = 0) in leisure, it implies
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that leisure is a normal good and labor is taxed.5 Evaluating (22) for this functional form and

assuming that, under the Ramsey plan, the allocations converge to a steady state, we have

� � =
1

(1� u�)

�
�(1� h)

� + h
� u�

�
(24)

where u� = (1�n�) is a measure of unemployed family members in a steady state, n� is de�ned

as in (15) and we assume constant government spending over time, i.e. gt = g; t = 0; 1; : : :.

Equation (24) suggests that there is a positive relationship between labor income taxes and

hours worked (1 � ht). Or conversely, labor taxes vary negatively with leisure (ht). That

is, @� �=@h = � [�(1 + �)] = [(1� u�)(� + h)2] < 0. Also from equation (24), labor taxes vary

negatively with unemployment, or conversely are positively related to the economy employment

rate, i.e., @� �=@u� = � [h(1 + �)] = [(1� u�)2(� + h)] < 0.

Although in our setup we make a distinction between employment nt = (1� ut) and hours

worked (1 � ht), the intuition for this result follows the same arguments presented by Zhu

(1992) and Scott (2007), where the structure of the optimal labor income taxation depends on

the elasticity of the labor supply. Labor is more inelastically supplied when employment is high

and, since the Ramsey planner is required to tax inelastic variables more heavily to minimize

tax distortions, labor income tax rates vary positively with employment and hours worked.

To see this relationship more clearly, note that family�s problem �rst order conditions with

respect to consumption and leisure form a system of equations such that c and h can be solved

in terms of � (the Lagrangian multiplier on the household�s budget constraint) and !, where

! = (1 � �)w. For our purpose we are interested in the compensated labor supply response

with respect to a change in ! holding � constant. We get

@(1� ht)

@!t
= � (1� ut)u11(t)�t

u22(t)u11(t)� u212(t)
> 0 (25)

This expression represents the compensated labor-supply response when the tax rate changes

(the substitution e¤ect). This substitution e¤ect captures the distortionary e¤ect of the labor-

income tax. That is, a higher labor tax increases leisure and lowers labor supply (1� ht) and

thus lowers the tax base.
5Basu and Renström (2007) study optimal taxation in an environment with indivisible labor supply, HARA

class of preferences with nonseparable leisure.
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For our additively separable utility function, equation (23), the compensate elasticity of

labor supply is given by

�t =
@(1� ht)

@!t

!t
(1� ht)

= (1� ut)!t(1� ht)�
�1�t (26)

There are two e¤ects of the unemployment on the elasticity of labor supply. The unemployment

rate impacts this elasticity directly and implies that when unemployment is high, labor is

more inelastically supplied. On the other hand, a high unemployment indirectly increases

labor supplied, indicating that labor is more elastic. One can show that the net e¤ect of a

high unemployment rate on the elasticity of labor supply is negative. That is, labor is more

inelastically supplied when unemployment is low (the indirect e¤ect dominates the direct one).

Hence, labor income tax rates vary negatively with unemployment.

Given the implications of the network process for the equilibrium unemployment rate,

summarized in Proposition (2), we can study how di¤erent network characteristics might a¤ect

the design of the optimal labor income tax. In economies where the job information process is

poor, i.e., low arrival probability, low rate of job information transmission among peers, high

job break up probability or low numbers of links, the equilibrium unemployment rate is higher

and the Ramsey planner is required to tax labor income at a lower rate. On the other hand, if

information about job opportunities is well transmitted among peers, it increases the likelihood

of an unemployed worker to hear and get a job. In such an economy, the unemployment rate

tend to be lower and the government can implement a higher income tax. In sum:

Proposition 3 When the labor market is governed by social network and the network dynamics

is exogenous, the optimal labor income tax is higher in more connected job network economies.

Proof. See Appendix.

5 Numerical Results

[TO BE COMPLETED]

When the network dynamics is exogenous and preferences are separable in consumption

and leisure, the optimal labor income tax is higher in more connected job network economies.
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Among the cases we study - empty, regular, power law and geometric - the optimal taxation

in the presence of an empty network is a good illustration of one of the extremes faced by

the government. In this case, the �ow of information about job opportunities among agents

is nonexistent. There are no peer e¤ects (no information transmission) and information is

lost (if an employed agent hear about another job opening) in this context. Unemployment

is higher and, consequentially, it is optimal for the government to tax less those with jobs.

To the extent that more and better information is transmitted from an employed worker to

his/her unemployed peers, either because agents have more links or because the rate at which

such information is transmitted is higher, the required labor income tax is higher. Figure 3

illustrates this result for the geometric network.
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6 Conclusion

This paper studies the optimal labor income taxation in the presence of social networks. The

unemployment rate is then determined by the dynamic of the labor market, which is governed

by the social network. Unemployment results as individuals are unsuccessful in hearing about

job opportunities themselves or through their peers in a network. The optimal limiting capital

tax rate is zero, independent of the labor market frictions. The optimal labor income tax is

decreasing in the unemployment rate and the job network process parameters play an important

role in determining optimal �scal policy. We allow agents to invest some of their time on

building links and connect to peers (endogenous network). The optimal tax is negatively
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related to the transmission rate of job information from peers in a particular network and it is

lower in more connected job network economies.

Appendix

Derivation of the Implementability Constraint

To derive the implementability constraint, equation (11), �rst premultiply the family�s budget
constraint in period t with the associated Lagrangian multiplier �t�t and sum over all periods
t � 0
1X
t=0

�tu1(t) [ct + kt+1 +Bt+1] =
1X
t=0

�tu1(t)
�
n(et�1)(1� � lt)wtlt + (1� n(et�1))bt + Ttkt +BtRt

�
(27)

Use �rst-order conditions with respect to capital and bonds to eliminate the after-tax return
on capital and bonds we obtain

1X
t=0

�tu1(t) [ct] =
1X
t=0

�tu1(t)
�
n(et�1)(1� � lt)wtlt + (1� n(et�1))bt

�
+ A00 (28)

where A00 = u1(0) [T0k0 +B0R0]. Multiplying equilibrium equation (10) by �t+1u1(t + 1) we
get

�t+1u1(t+1)(1�� lt+1)wt+1lt+1 = �t+1u1(t+1)bt+1+�
t+1u2(t+1)(lt+1�et+1)+�tu2(t)

(1� n(et�1))

n0(et)

and then multiply it by n(et) yields

1X
t=0

�t+1n(et)u1(t+ 1)
�
(1� � lt+1)wt+1lt+1 � bt+1

�
=

1X
t=0

�t+1n(et)u2(t+ 1)(lt+1 � et+1)(29)

+

1X
t=0

�t+1n(et)u2(t)
(1� n(et�1))

n0(et)

Notice that the right-hand-side of equation (28) can be written as

u0(0)
�
n(�1)(1� � l0)w0l0 + (1� n(�1))b0

�
+

1X
t=0

�t+1u1(t+ 1)n(et)
�
(1� � lt+1)wt+1lt+1 � bt+1

�
+

1X
t=0

�tu1(t)bt

Substituting (29) into (28) and after some manipulation, we obtain the implementability con-
straint for this problem equation (11):

1X
t=0

�t
�
u1(t) (ct � bt)� u2(t)n(et�1)(lt � et)� u2(t)(1� n(et�1))

n(et)

n0(et)

�
= A0

where A0 = u1(0)
�
n(e�1)(1� � l0)w0l0 � (1� n(e�1))b0 + T0k0 +R0B0

�
+ u2(0)n(e�1)(l0 � e0).
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Proof of Proposition 1

Proof. To show that any allocation that satisfy equations (7), (11) and (12) can be decentral-
ized as a network competitive equilibrium we use these allocations together with the family�s
and �rm�s �rst-order conditions to construct the corresponding prices and taxes. The rental
rate rt is given by the �rm�s �rst-order condition with respect to capital. The capital tax � kt
is determined using the family�s and �rm�s �rst-order condition with respect to capital, and
implicitly de�ned by

u1(t)

�u1(t+ 1)
� [1 + F1(t+ 1)� �] = �� ktF1(t+ 1) (30)

The wage rate wt and the labor tax rate � lt are determined by substituting equation (10)
into the �rm�s �rst-order condition with respect to labor, obtaining

1

(1� � lt+1)
= u1(t+1)F2(t+1)lt+1

�
u1(t+ 1)bt+1 + u2(t+ 1)(lt+1 � et+1) + u2(t)

(1� n(et�1))

n0(et)

��1
(31)

The family�s �rst-order condition with respect to labor for period t+ 1 is

1

(1� � lt+1)
=
u1(t+ 1)

u2(t+ 1)
F2(t+ 1) (32)

Rewrite (31) and (32) as follows

(1� � lt+1) =
1

u1(t+ 1)F2(t+ 1)lt+1

�
u1(t+ 1)bt+1 + u2(t+ 1)(lt+1 � et+1) + u2(t)

(1� n(et�1))

n0(et)

�
(33)

(1� � lt+1) =
u2(t+ 1)

u1(t+ 1)F2(t+ 1)
(34)

and rearranging we obtain

	(ct; lt; et; ct+1; lt+1; et+1) = u1(t+ 1)bt+1 � u2(t+ 1)et+1 + u2(t)
1� n(et�1)

n0(et)
(35)

which is equivalent to equation (12). The labor tax � lt is implicitly de�ned by both (33) and
(34) and to ensure that the labor taxes implied by these two conditions coincide the constraint
(35) is imposed in the Ramsey problem.
To show that any network competitive equilibrium allocations satisfy equations (7), (1),

(11) and (12), we proceed as follows. (1) The resource constraint, equation (7), is implied by
the family�s and government�s period-by-period budget constraints, thus feasibility is satis�ed.
(2) Premultiply the family�s budget constraint in period t with the associated Lagrangian
multiplier �t�t and sum over all periods t � 0. We proceed by solving for taxes and prices as
a function of allocations using the family�s and �rm�s �rst order conditions. This results in
the implementability constraint, equation (11). (3) Since, by de�nition, the labor tax rate � l

satis�es both (33) and (34), the allocations also satisfy the intertemporal constraint on labor
taxes, equation (12).

Ramsey�s Problem First Order Conditions

Let �, �t�t, �
t�t be the Lagrange multipliers on the implementability constraint (11), condi-

tion (12) and resource constraint (7), respectively. After some manipulation, the �rst-order
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conditions for ct; kt+1; lt and et are, respectively:

0 = (1 + �)u1(t) + �u11(t)(ct � bt)� u21(t)

�
�n(et�1)(lt � et)�

(1� n(et�1))

n0(et)
(�n(et)� �t)

�
� �t

(36)

0 = ��t + ��t+1 [Fk(t) + (1� �)] (37)

0 = �(1 + �)u2(t)� �u12(t)(ct � bt) (38)

� u22(t)n(et�1)

�
�n(et�1)(lt � et)�

(1� n(et�1))

n0(et)
(�n(et)� �t)

�
+ �tFl(t)

0 = �u2(t)(1� n(et�1))

�
1� �

1

(1� n(et�1))
+ �

n(et)n
00(et)

(n0(et))2
� �t

n00(et)

(n0(et))2

�
� �u12(t)(ct � bt)

(39)

� u22(t)(1� n(et�1))
2

�
�n(et�1)(lt � et)�

(1� n(et�1))

n0(et)
(�n(et)� �t)

�
� �u2(t+ 1)n

0(et)

�
(1 + �) (lt+1 � et+1) + �

n(et+1)

n0(et+1)
� �t+1

1

n0(et)

�
� u12(t+ 1)n

0(et)(lt+1 � et+1) [��(ct � bt) + �tbt+1]

� u22(t+ 1)n
0(et)

2(lt+1 � et+1)

�
�

�
�n0(et)(lt+1 � et+1)�

(1� n(et))

n0(et+1)

�
�n(et+1)� �t+1

��
+ �t

�
+ ��t+1Fl(t+ 1)n

0(et)lt+1
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