
Quasi-Maximum Likelihood Estimation and Testing for Nonlinear
Models with Endogenous Explanatory Variables

Jeffrey M. Wooldridge
Department of Economics
Michigan State University

East Lansing, MI 48824-1038
wooldri1@msu.edu

This version: June 2012

1



Abstract: This paper proposes a quasi-maximum likelihood framework for estimating

nonlinear models with continuous or discrete endogenous explanatory variables. Both joint and

two-step estimation procedures are considered. The joint estimation procedure can be viewed

as quasi-limited information maximum likelihood, as one or both of the log likelihoods used

may be misspecified. The two-step control function approach is computationally simple and

leads to straightforward tests of endogeneity. In the case of discrete endogenous explanatory

variables, I argue that the control function approach can be applied to generalized residuals to

obtain average partial effects. The general results are applied to nonlinear models for fractional

and nonnegative responses.

Keywords: Quasi-Maximum Likelihood, Control Function, Linear Exponential Family,

Average Structural Function
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1. Introduction

The most common method of estimating a linear model with one or more endogenous

explanatory variables is two stage least squares (2SLS). Nevertheless, several authors have

argued that the limited information maximum likelihood estimator – obtained under the

nominal assumption of jointly normally distributed unobservables – can have better

small-sample properties, particularly when there are many overidentifying restrictions

(possibly in combination with “weak” instruments). See, for example, Bekker (1994) and

Staiger and Stock (1997). Imbens and Wooldridge (2009) contains a summary and several

references.

It is well known that endogeneity among explanatory variables is generally more difficult

to handle in nonlinear models, although several special cases have been worked out. Unlike

with a linear model with constant coefficients, where 2SLS can always be applied regardless of

the nature of the endogenous explanatory variables (EEVs), with nonlinear models the

probabilistic nature the EEVs – whether they are continuous, discrete, or some combinaton –

plays a critical role. Methods where fitted values obtained in a first stage are plugged in for the

EEVs in a second stage are generally inconsistent for the both the “structural” parameters and

other quantities of interest, such as average partial (or marginal) effects.

For the most part, two approaches are used to estimate nonlinear models with EEVs.

Maximum likelihood (conditional on the exogenous variables) is, in principle, available when

a distribution (conditional on exogenous varaibles) for the EEVs is fully specified and a

distribution of the response variable conditional on the EEVs (and exogenous variables) is

specified or derived from a set of equations with unobserved errors. The MLE approach has

been widely applied, especially for binary responses, but it has some limitations. For one, it
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can be computationally difficult with multiple EEVs. Perhaps more importantly, it requires

specification of a full set of conditional distributions, and it is generally not robust if those

assumptions are wrong.

A second general approach is a control function approach, where residuals from a first

stage estimation procedure involving the EEVs are inserted into a second stage estimation

problem. Rivers and Vuong (1988) for probit models and Smith and Blundell (1986) for Tobit

models are popular examples. Wooldridge (2010) uses the control function (CF) approach in a

variety of settings, including nonlinear models with cross section data or panel data. Recently,

Blundell and Powell (2003, 2004) have shown that the approach has broad applicability in

semiparametric and even nonparametric settings. BP show that quantities of interest – partial

effects of the average structural function – are identified very generally, without distributional

or functional form restrictions. (Wooldridge, 2005, argues that the concepts of the average

structural function and average partial effects are similar, but the APE approach is more

flexible in that it can allow unobservables that are not assumed to be independent of exogenous

covariates.) In some cases, the practice of inserting first-stage fitted values for EEVs can

produce consistent estimators of parameters up to a common scale factor, but the assumptions

under which this occurs are very restrictive, and average partial effects are not easy to recover.

In addition, the “fitted-value method” does not allow simple tests of the null that the suspected

EEVs are exogenous.

The main drawback of the CF approach – even in BP’s general setting – is that the nature

of the EEVs is restricted. It must be assumed that the reduced forms of the EEVs have additive

errors that are independent of the variables exogenous in the structural equation. The

assumption of additive, independent errors rules out discrete EEVs. Thus, while the BP
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approach allows for general response functions, its scope is restricted because it does not allow

general EEVs.

Since the work of White (1982), econometricians have known that the parameter estimators

obtained from maximum likelihood estimation of misspecified models can be given a useful

interpretation, and it is possible to perform inference. Further, we know there are special cases

where the so-called quasi-MLE actually identifies population parameters that index some

feature of the distribution. See Gourieroux, Monfort, and Trognon (1984) for the case of

conditional means and conditional variances. The first contribution of this paper is to show that

there are situations of practical interest where using joint MLEs has significant robustness

properties. In other words, even in models with EEVs, certain quasi-MLEs identify interesting

parameters. Two important examples are the MLEs obtained for fractional responses with

either continuous or binary EEVs. As it turns out, the log likelihood function for a binary

response can be applied to fractional response variables under a conditional mean assumption

without further restricting the conditional distribution. A practically important implication is

that a joint estimation procedure that is available for binary responses can be applied to

fractional responses. Because the method is quasi-MLE, robust inference needs to be used

because the information matrix equality is generally violated.

A second example is when the response variable is a count variable or any other variable

with an exponential conditional mean function. The general results here show that one could

maximize a joint quasi-log likelihood associated with a Poisson response and a binary EEV.

The one-step nature of the estimation procedure might improve over available two-step

estimators, such as the one proposed by Terza (1998), while being just as robust and possibly

more efficient.

5



A second contribution of the paper is to derive a class of tests for endogeneity in nonlinear

models. The score principle is convenient for obtaining robust variable addition tests (VATs).

Generally, the variable added to a standard second-stage MLE or quasi-MLE is a generalized

residual.

The third contribution is more controversial. I propose an extension of the BP approach by

suggesting that we adopt independence assumptions of unobservables in the structural equation

conditional on generalized residuals obtained from the reduced forms for the EEVs. I show

that, if we take the conditional independence (CI) assumption seriously, the average structural

function – and, therefore, the average partial effects – are identified. Even if we do not fully

believe the CI assumption, adding those GRs in the second step may provide reasonable

approximations to average partial effects. After all, the score test – where the coefficient on the

EEV is zero – is obtained by adding the GRs. Special cases of this approach have been

suggested by Petrin and Train (2010) (multinomial response, continuous EEVs), Terza, Basu,

and Rathouz (2008, binary response, binary EEV), and Wooldridge (2010, ordered response,

binary EEV). Here I provide a unified setting and discuss why the approach is more

convincing for continuous EEVs than discrete EEVs, but where the latter might be acceptable

– especially in complicated settings.

The paper is organized as follows. In Section 2 I use a standard linear model as motivation

by illustrating the robustness of the Gaussian limited information maximum likelihood

estimator (LIML). The arguments in the linear case can be extended to nonlinear cases, and

Section 3 lays out the simple general approach. Section 4 shows how the general approach can

be applied to fractional response variables and nonnegative responses with an exponential

mean function, including count responses.
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The simple variable addition tests for testing the null that the EEVs are exogenous are

derived in Section 5. These tests are easily obtained using standard software, and they motivate

the general control function approach in Section 6 for handling endogeneity of continuous and

discrete EEVs. Section 7 contains concluding remarks.

2. Motivation: A Linear Model

Consider a population linear model for a response variable y1 with a single endogenous

explanatory variable (EEV), y2:

y1  o1y2  z1o1  u1,     (2.1)

where z1 is a 1  L1 strict subvector of a vector z. We assume the vector z is exogenous in the

sense that

Ez′u1  0.     (2.2)

In practice, z1 would include a constant, and so we assume that u1 has a zero mean. We use the

convention of putting “o” on the parameters because it is helpful to distinguish the population

values from generic values in the parameter space.

The reduced form of y2 is a linear projection in the population:

y2  zo2  v2

Ez′v2  0

    (2.3)

    (2.4)

where o2 is L  1. Notice that nothing about the linear projection defined by (2.3) and (2.4)

restricts the nature of y2; it could be a discrete variable, including a binary variable. Also, (2.1)

can be viewed as just a linear approximation to a underlying linear model, where (2.2)

effectively defines o1 and o1.
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Provided Ez′z is nonsingular and o22 ≠ 0, where o2  o21
′ ,o22

′  ′, two stage least

squares (2SLS) estimation under random sampling is consistent; see, for example, Wooldridge

(2010, Chapter 5). An alternative approach, and one that is convenient for testing the null that

y2 is exogenous, is a control function approach. Write the linear projection of u1 on v2, in error

form, as

u1  o1v2  e1,     (2.5)

where  o1  Ev2u1/Ev2
2 is the population regression coefficient. By construction,

Ev2e1  0 and Ez′e1  0.

If we plug (2.5) into (2.1) we can write

y1  o1y2  z11  o1v2  e1

Ez′e1  0, Ev2e1  0, Ey2e1  0

    (2.6)

    (2.7)

Adding the reduced form error, v2, to the structural equation “controls” for the endogeneity of

y2. If we could observe data on v2, we could simply add it as a regressor. Instead, given a

random sample of size N, we can estimate o2 in a first stage by OLS and obtain the residuals,

v̂i2, i  1, . . . ,N. In a second stage we run the regression

yi1 on yi2,zi1, and v̂i2, i  1, . . . ,N.     (2.8)

The OLS estimators from (2.8) are the control function (CF) estimators. It is well known – for

example, Hausman (1978) – that the CF estimates ̂1 and ̂1 are identical to the 2SLS

estimates. Further, the regression-based Hausman test of the null that y2 is exogenous is a t test

of H0 : o1  0. One may wish to make the test robust to heteroskedasticity, but there is no

need to adjust for the first-stage estimation of o2 under the null hypothesis. For further

discussion, see Wooldridge (2010, Chapter 5).
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Rather than use a two-step method, an alternative is to obtain the LIML estimator assuming

that u1,v2 is independent of z and bivariate normal, which implies that e1,v2 is bivariate

normal and independent of z. The log likelihood for random draw i (conditional on zi),

multiplied by two, is

− log1
2 − yi1 − 1yi2 − zi11 − 1yi2 − zi22/1

2 − log2
2 − yi2 − zi22/2

2,

and the LIML estimators solve

min
1,1,1,2,1

2,2
2
∑
i1

N

yi1 − 1yi2 − zi11 − 1yi2 − zi22/1
2  yi2 − zi22/2

2  log1
2  log2

2.

This setup is dubbed “LIML” because Dy2|z is an unrestricted reduced from.

For the purposes of this paper, an interesting feature of the LIML estimator is that it is fully

robust in the sense that it consistently estimates the parameters in (2.1) and (2.3) under only the

zero covariance conditions in (2.2) and (2.4). To see this, write

y1  o1y2  z1o1  o1y2 − zo2  e1

Ez′e1  0, Ey2e1  0,

which means that specific nonlinear functions of o1,o1,o1,o2 index the linear projection

of y1 on y2,z:

Ly1|y2,z  o1y2  z1o1  o1y2 − zo2.     (2.9)

In addition,

Ly2|z  zo2.     (2.10)

Together, by the minimum mean square error property of the linear projection, (2.9) and (2.10)

imply that the parameters o1,o1,o1, and o2 solve
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min
1,1,1,2

Ey1 − 1y2 − z11 − 1y2 − z22  Ey2 − z22

Weighting the expected squared errors by positive constants does not change the solutions. In

fact, the first order conditions (FOCs) with respect to 1, 1, 1, and 2 are

− Ey2y1 − 1y2 − z11 − 1y2 − z2/1
2  0

− Ez1
′ y1 − 1y2 − z11 − 1y2 − z2/1

2  0

− Ey2 − z2y1 − 1y2 − z11 − 1y2 − z2/1
2  0

1Ez′y1 − 1y2 − z11 − 1y2 − z2/1
2 − Ez′y2 − z2/2

2  0,

and o1,o1, o1,o2 solves these (uniquely) by definition of the linear projection. If we

define

o12 ≡ Ey1 − o1y2 − z1o1 − o1y2 − zo22  Ee1
2

o12 ≡ Ey2 − zo22

then the FOCs for 1
2 and 2

2 can be written as

− o12

1
22

 1
1

2  0

− o22

2
22

 1
2

2  0.

It follows that the solutions are o12 and o22 .

When equation (2.1) is just identified, it is well-known that the IV and LIML estimators are

alebraically equivalent – which means, of course, that LIML is just as robust as IV. The

argument above – which I believe is original – shows that LIML is just as robust as 2SLS even

in the overidentified case.

It is fairly straightforward to extend the previous analysis to a vector y2 of EEVs. The

bottom line is that the Gaussian log likelihood identifies the parameters of a linear model under

the same identification condition as 2SLS. We do not need Gaussianity, homoskedasticity, or
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even linear conditional expectations. Of course, in general we should use robust inference of

the kind discussed in White (1982) because the information matrix equality does not hold (for

either of the conditional quasi-log likelihoods).

In the next section we argue that the findings for linear models can be extended to certain

nonlinear models.

3. A Framework for Quasi-LIML for
Nonlinear Models

Suppose that y1 is a binary response and y2 is continuous, and consider the model

y1  1o1y2  z1o1  u1 ≥ 0

y2  zo2  v2

    (3.1)

    (3.2)

The standard parametric assumptions are that u1,v2 is bivariate normal with mean zero and

independent of z. Under normality it can be shown [for example, Wooldridge (2010, Section

15.7.2)] that

Py1  1|y2,z   o1y2  z1o1  o1/o2y2 − zo2
1 − o12 1/2

,     (3.3)

where o22  Varv2 and o1  Corrv2,u1. This formula is the basis for the Rivers-Vuong

(1988) two-step approach to estimating scaled coefficients in a probit model with a continuous

EEV.

We can easily see that the MLE based on Dy1|y2,z and Dy2|z has some robustness

properties. Suppose we define v2  y2 − zo2, where o2 is the vector of linear projection

parameters, and o22 ≡ Ev2
2. As in Section 2, we know the Gaussian quasi-log-likelihood

function identifies these parameters without further assumptions. Then, if we assume
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Du1|y2,z  Du1|v2 – which means that Du1|y2,z depends on y2,z only through the

linear function y2 − z2 – and that Du1|v2 has mean linear in v2 and is homoskedastic normal,

the quasi-MLE is consistent even though the full distributional assumptions do not hold. In

Section 4 we will show that this finding carries through if y1 is a fractional response with a

conditional mean that has a probit form.

Now consider a more general setup. Let o1, and o2 be the parameters appearing in the

model for some feature of Dy1|y2,z, where only o2 appears in some feature of Dy2|z. Let

q2y2,z,2 and q1y1,y2,z,1,2 be objective functions such that o2 maximizes

Eq2y2,z,2 and o1,o2 maximizes Eq1y1,y2,z,1,2. Then o1,o2 maximizes

max
1,2

Eq1y1,y2,z,1,2  Eq2y2,z,2.     (3.4)

If we can assume or establish uniqueness of o1,o2 – which typically follows under standard

identification conditions – it follows that, under standard regularity conditions, the solutions

̂1, ̂2 to

max
1,2
∑
i1

N

q1yi1,yi2,zi,1,2  q2yi2,zi,2     (3.5)

are generally consistent for o1,o2.

In this paper we consider the case where q1 and q2 are quasi-log likelihoods. The

challenge is to find interesting cases where quasi-log likelihoods identify the parameters of

interest. Of course, in general a two-step procedure – where o2 is estimated by ̃2 and then its

estimator is plugged into a second step to obtain ̃1 – will also be consistent. The point here is

that the one-step estimator that solves (3.5) are generally as robust as a two-step estimator. The

one-step estimator makes inference more straightforward and, in some cases, it is more
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efficient. As in the linear case, the one-step estimator may have better finite-sample properties.

Plus, as we will see in Section 4, in some cases there are no convenient two-step estimators yet

a joint quasi-LIML is consistent and asymptotically normal.

With smooth objective functions in (3.5), asymptotic analysis follows from standard results

on M-estimation [for example, Wooldridge (2010, Chapter 12)]. In general, one needs to use

the White (1982) sandwich variance estimator for misspecified maximum likelihood.

In some cases it will happen that, for all outcomes y2,z, o solves

max
1,2

Eq1y1,y2,z,1,2|y2,z,     (3.6)

which implies that the scores for q1 and q2 (evaluated at o1 and o2) are uncorrelated. In

that case,

Avar N ̂ − o  Ao1
−1Bo1Ao1  Ao2

−1Bo2Ao2     (3.7)

where, for objective functions g  1,2,

Aog  −E∇2qgo

Bog  E∇qgo ′∇qgo

    (3.8)

    (3.9)

Further simplifications of the componets of the sandwiches are sometimes available on a

case-by-case basis.

4. Examples of Quasi-LIMLs

We now show how the setup in Section 3 can be applied to several interesting examples.

For notationaly simplicity, we do not use “o” to index the true parameters.

4.1. Models for Binary and Fractional Responses
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Suppose that y1 is a variable taking values in the unit interval, 0,1. This includes the case

where y1 is binary but also allows y1 to be a continuous proportion. y1 can have both discrete

and continuous characteristics (so, for example, y1 can be a proportion that takes on zero or

one with positive probability).

We set up the endogeneity of a covariate as an omitted variable problem, and start by

assuming y2 has a linear reduced form with substantive restrictions:

Ey1|y2,z, r1  Ey1|y2,z1, r1  x11  r1.

y2  z2  v2,

    (4.1)

    (4.2)

where x1 is a general (nonlinear) function of y2,z1 and r1 is an omitted factor thought to be

correlated with y2. The first equality in (4.1) imposes at least one exclusion restriction, where a

strict subset z1 of z appears in Ey1|y2,z, r1. Because x1 can be any function of y2,z1, the

setup encompasses the case where y2 should be replaced with h2y2 for h2 is strictly

monotonic. In what follows, we take y2 to be the function of the EEV so that an additive,

independent error v2 is realistic. In fact, we assume that r1,v2 is independent of z and jointly

normal.

With r1  Normal0,r1
2  it can be shown that the average structural function is

ASFy2,z1  Eri1x11  ri1  x1r1

r1 ≡ 1/1  r1
2 1/2,

    (4.3)

    (4.4)

where x1 now denotes fixed values of the arguments. [See Wooldridge (2010, Section 15.7.2).]

Fortunately, we can identify the scaled coefficients r1, even though 1 and r1
2 are not

separately identified.

There is another useful way to obtain the average structural function using the reduced

form error v2. First, by iterated expectations,
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ASFy2,z1  Eyi2,ziEx11  ri1|yi2,zi,     (4.5)

which means we first find (for fixed x1) Ex11  ri1|yi2,zi and then average out over the

distribution of yi2,zi. Wooldridge (2005) shows that, under the maintained assumptions,

Eyi2,ziEx11  ri1|yi2,zi  x1e1  e1vi2     (4.6)

where ri1  1vi2  ei1, e1  1/1  e1
2 1/2, e1  1/1  e1

2 1/2. Wooldridge (2005) shows

that a two-step procedure consistently estimates the scaled coefficients e1:

(i) Regress yi2 on zi and obtain the residuals, v̂i2.

(ii) Use Bernoulli QMLE with the probit response function of yi1 on xi1, v̂i2 to estimate ̂e1

and ̂e1. (As a practical matter, this can be implemented using so-called “generalized linear

models” (GLM) software.)

(iii) The ASF is consistently estimated as

ASFy2,z1  N−1∑
i1

N

x1̂e1  ̂e1v̂i2,

and this can be used to obtain APEs with respect to y2 or z1.

Rather than use a two-step approach, a joint quasi-LIML approach can be used to

consistently estimate r1, 2, and 2
2  Ev2

2. To see how, first, define a binary variable

w1  1x11  r1  a1 ≥ 0

Da1|y2,z, r1  Normal0,1,

    (4.7)

    (4.8)

and note that

Ew1|y2,z, r1  Ey1|y2,z, r1  x11  r1     (4.9)

and so, by iterated expectations,
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Ey1|y2,z  Ew1|y2,z.     (4.10)

Now, write

w1  1x1r1  r1  a1/1  r1
2 1/2 ≥ 0

≡ 1x1r1  e1 ≥ 0,

    (4.11)

    (4.12)

where e1 ≡ r1  a1/1  r1
2 1/2 has a standard normal distribution and is independent of z.

Because r1 is generally correlated with v2, e1 and v2 are generally correlated; let 1 be the

correlation. If we assume joint normality of r1,v2 we have exactly the setup for the

Rivers-Vuong model, and so

Ew1|y2,z  
x1r1  1/2y2 − z2

1 − 1
21/2

 Ey1|y2,z.

What we have shown is that the mean Ey1|y2,z has the exact same form as probit with a

continuous EEV. Because the Bernoulli log likelihood is in the linear exponential family, it

identifies the parameters in a correctly specifield conditional mean. So we can take

q1y1,y2,z,1,2  1 − y1 1 − 
x1r1  1/2y2 − z2

1 − 1
21/2

 y1
x1r1  1/2y2 − z2

1 − 1
21/2

and then

q2y2,z,2  − log2
2/2 − y2 − z22/22

2.

When we combine q1 and q2, we obtain the usual Rivers-Vuong log likelihood, which is

programmed in popular statistical packages. However, we must recognize that y1 is fractional,

and so we are using quasi-MLE. Generally, a fully robust sandwich variance matrix estimator

must be used for inference.
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We can also allow more flexibility in Dy2|z by allowing, say, Vary2|z  expz2, and

then using the Gaussian quasi-log likelihood for Dy2|z with linear mean and variance

expz2. Then, we can assume Dr1|y2,z depends only on the standardized error,

y2 − z2/ expz2/2.

A similar argument holds when y2 is binary and follows a probit model:

y2  1z2  v2 ≥ 0

v2|z  Normal0,1

    (4.13)

    (4.14)

If w1 is defined as in (4.7) and (4.8) we still have the key result in (4.10). Further, from the

bivariate probit model,

Ew1|y2  1,z  
−z2




x1r1  1v2

1 − 1
21/2

dv2  Ey1|y2  1,z,

and a similar expression holds for Ey1|y2  0,z. Therefore, for q2y2,z,2 we use the usual

probit log-likelihood and for q1y1,y2,z,1,2 we use the Bernoulli quasi-log likelihood

associated with bivariate probit. As a practical matter, bivariate probit software simply needs

to allow fractional y1 and robust inference.

When y2 is binary, allowing x1 to be a general function of y2 and z1 allows a full set of

interactions among y2 and the exogenous variables z1. A full switching regression model for

fractional responses, where a different source of omitted variables is allowed under the two

regimes, is also easily estimated using a standard Bernoulli log likelihood. In this case, we

estimate (scaled) coefficients – say 0 and 1 – by applying a Heckman self-selection

correction to “probit” models for y2  0 and y2  1. (That is, we again act as if y1 is binary

even though it is fractional.) The argument for why this works is essentially the same as the

single regime case. When y2 is a program indicator, the average treatment effect of the
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program is estimated as

̂ate  N−1∑
i1

N

zi1̂1 − zi1̂0,

where the zi1 are the exogenous covariates in the model for yi1, ̂0 is obtained using the yi2  0

subsample, and ̂1 is obtained using the yi2  1 subsample.

4.2. Exponential Models

For nonnegative responses y1, including but not restricted to count variables, an omitted

variables formulation is

Ey1|y2,z, r1  exp x11  r1,     (4.15)

where, again, x1 contains an intercept and can be any function of y2,z1. Consider the case

where y2 is binary, as in (4.13) and (4.14), and strengthen the assumptions so that r1,v2 is

independent of z and bivariate normal, with mean zero, Varv2  1, Varr1  1
2, and

Corrv2, r1  1.

Following Terza (1998), it can be shown that

Ey1|y2,z  exp 1
2/2  x111  z2/z2y21 − 1  z2/1 − z21−y2     (4.16)

Because x11  1, only 1
2/2  11 is identified. It is easily seen that this is exactly the intercept

that appears in the APEs – see, for example, Terza (2009) and Wooldridge (2010, Chapter 18)

– so we just absorb 1
2/2 into the intercept 11.

Terza (1998) proposed a two-step nonlinear least squares method, but we can use a

quasi-LIML estimator, too. We simply combine the probit log likelihood for Dy2|z with, say,

the Poisson quasi-log likelihood with conditional mean (4.16). Because the Poisson
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distribution is a member of the linear exponential family, the discussion from Section 3 shows

that we only need the probit model for y2 to be correctly specified and Ey1|y2,z to have the

form (4.16). Computationally, the joint estimator may pose some challenges, but in cases with

overidentification or weak instruments it may have better finite-sample properties. In addition,

under the null hypothesis 1  0, the Poisson QMLE of 1 has some efficiency properties: it is

the asymptotically efficient estimator among estimators that use only the conditional mean

assumption if Vary1|y2,z1  1
2Ey1|y2,z1. Thus, the estimator is more efficient than

nonlinear least squares under standard count distributions when 1  0, and that is likely to be

true for nonzero 1, too.

If y2 is continuous, y2  z2  v2, and r1  1v2  e1 with Vare1  1
2 − 1

22
2, then

Ey1|z,y2  Eexpe1 exp x11  1v2

 exp 1
2 − 1

22
2/2expx11  1v2.

As before, the intercept we want to estimate is 1
2/2  11, so we just absorb 1

2/2 into 11. Then

Ey1|z,y2  exp  − 1
22

2/2  x11  1y2 − z2.     (4.17)

We can use the Gaussian log likelihood for Dy2|z, which depends on 2 and 2
2, along with

the Poisson quasi-log likelihood with mean given by (4.17). If Vary2|z  expz2 we can

replace 2
2 with expz2 and v2 with y2 − z2/ expz2/2.

5. Variable Addition Tests for Endogeneity

The approach we take to testing the null that an EEV is exogenous is similar to Vella

(1993), who uses a maximum likelihood framework. In cases where we have entirely specified

Dy1|y2,z and Dy2|z, the approach here reduces to Vella’s test in several instances.
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To motivate variable addition tests (VATs) when we have not fully specified conditional

distributions, consider the case where y2 is binary and

Ey1|y2,z  E1 − 1
2−1/2x11  1v2|y2,z ≡ mx11,1,2     (5.1)

where, to simplify notation, we use 1 to denote the scaled coefficients that index the ASF, and

2 are the parameters in the probit model for y2. What we need to obtain the score test are the

derivatives of mx11,1,2 with respect to 1,1 evaluated at 1  0. (Under the null

hypothesis, 1 and 2 are estimated using separate procedures.) Taking the derivatives through

the integral, it is easily seen that

∂mx11, 0,2
∂1

 x11x1

∂mx11, 0,2
∂1

 Ex11v2|y2,z  x11Ev2|y2,z ≡ x11gr2,

    (5.2)

    (5.3)

where

gr2 ≡ Ev2|y2,z     (5.4)

is a population generalized residual (PGR) – see, for example, Gourieoux, Monfort, Renault,

and Trognon (1987) (GMT). Notice that gr2 depends on the population parameters. (GMT call

gr2 “generalized error.”) As is well known, the PGR when y2 follows a probit model is related

to the inverse Mills ratio,   /:

gr2  y2z2 − 1 − y2−zi2.     (5.5)

When we plug in the probit estimates, ̂2, for each observation i we get a set of N (sample)

generalized residuals,

gri2  yi2zi̂2 − 1 − yi2−zi̂2.     (5.6)
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Given the structure of the score of the mean function in (5.2) and (5.3), the score test is

easily seen to be asymptotically equivalent to a simple omitted variables test of test of gr2. In

other words, we can test H0 : 1  0 in the auxiliary equation

“Eyi1|yi2,zi  xi11  1gri2, ”     (5.7)

where we replace 2 with the probit estimates. So we can obtain a Wald (robust t) test of

H0 : 1  0 using the conditional mean function

xi11  1gri2     (5.8)

in a (fractional) probit estimation. We need to make the t statistic robust when y1 is a fractional

response because the implicit variance in the Bernoulli quasi-log likelihood is incorrect . We

can use a nonrobust test if y1 is binary and the probit model for y1 is correctly specified under

H0. In any case we need not make an adjustment for estimation of 2.

When y2 is continuous with reduced form y2  z2  v2 where v2 is independent of z,

gr2  v2, and then the VAT for the null that y2 is exogenous is obtained exactly as in (5.8)

except that gri2  v̂i2 are just the OLS residuals from yi2 on zi. This is easily derived from the

conditional mean function

Ey1|y2,z  
x11  1/2y2 − z2

1 − 1
21/2

,

obtaining the derivatives with respect to 1,1, and then evaluating at 1  0. Wooldridge

(2005) proposed this VAT in the context of control function estimation with fractional

response variables.

A general setting for index functions in the context of the linear exponential family starts

with
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y2  Hz,v2     (5.9)

where v2 is independent z. Further, assume that

Ey1|z,v2  Gx1c1,1  a1,2v2,     (5.10)

where x1 is 1  K1, G is a continuously differentiable function with derivative g, and

c1,1 and a1,2 are known functions of the parameters such that

c1, 0  1

∂c1, 0
∂1

 0

∂c1, 0
∂1

 IK1

a0,2  0

∂a0,2
∂1

≡ 1 ≠ 0

Under the null hypothesis H0 : 1  0,

Ey1|y2,z  Ey1|y2,z1  Gx11,     (5.11)

where Gx11 is the average structural function under H0. The test is based on the mean

function under the alternative,

Ey1|y2,z  mx1,1,1,2  EGx1c1,1  a1,2v2|y2,z.

The derivatives of mx1,1,1,2 with respect to 1,1, evaluated at 1  0, are

∂mx1,1, 0,2
∂1

 gx11x1

∂mx1,1, 0,2
∂1

 Egx11v2|y2,z  gx111gr2,

    (5.12)

    (5.13)

where, again, gr2  Ev2|y2,z is the population generalized residual. Using the same

reasoning as before, we can apply the underlying quasi-MLE for the chosen LEF to the mean
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function

Gxi11  1gri2     (5.14)

and use a robust t test of H0 : 1  0. The results from Wooldridge (2010, Section 12.4) on

two-step M-estimators can be applied to show that replacing 2 with ̂2 (the M-estimator in the

model for y2) does not affect the limiting distribution under H0.

There are many ways to extend the previous approach. For example, if y2 is continuous but

heteroskedasticity, we can estimate the moments

Ey2|z  z2

Vary2|z  expz2

using, say, the Gaussian quasi-log likelihood. Then the generalized residual would then be

gri2 
yi2 − zi̂2
expzi̂2/2

,     (5.15)

and this can be used in a variable addition test.

If y2 is a corner solution response following at standard Tobit model, the generalized

residual is

gri2  −̂21yi2  0−zi̂2  1yi2  0yi2 − zi̂2,     (5.16)

where ̂2, ̂2
2 are the Tobit MLEs. These GRs can be added to a fractional probit estimation,

for example, and a simple t test computed.

For an exponential response with y2 binary,we have Ey1|y2,z in closed form, so we need

the derivative of

Ey1|y2,z  exp x111  z2/z2y21 − 1  z2/1 − z21−y2

with respect to 1 evaluated at 1  0. Computing the derivatives separately for y2  1 and
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y2  0, and then combining terms, we have

∂mx1,1, 0,2
∂1

 exp x11y2z2 − 1 − y2−z2,

an expression that follows from the general treatment above. Therefore, after obtaining gri2

from (5.6), we add gri2 along with xi1 to, say, a Poisson QMLE analysis with an exponential

mean and compute a robust t statistic on gri2. Remember, this allows xi1 to consist of a full set

of interactions, xi1  zi1,yi2zi1.

Other extensions to this test may be useful when one suspects a large degree of

heterogeneity in an underlying model. If, for example, we start with

Ey1|y2,z,a1,d1  Ga1y2  z1d1,     (5.17)

where a1,d1 are random coefficients, independent of z, and multivariate normal, the VAT

would be to use a quasi-MLE applied to the mean function

G1yi2  zi11  1gri2yi2  gri2zi11     (5.18)

and use a joint, robust Wald test of H0 : 1  0, 1  0. Recall that zi1 includes an intercept,

so gri2 appears by itself in this equation and also interacted with the endogenous and

exogenous explanatory variables. If y1 is a binary or fractional response, we can use the probit

response function and Bernoulli (quasi-) MLE. If y1 is nonnegative, such as a count variable,

we can use the Poisson quasi-MLE.

In applying the specification tests proposed in this section, a few practical points are worth

remembering. First, the only assumption being used is that, under H0,

Ey1|y2,z  Ey1|y2,z1  Gx11. We do not need any model for y2 to be correctly

specified under H0. In fact, if y2 is binary we could, instead of using the generalized residuals
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obtained from probit, use the OLS residuals obtained from a linear probability model and still

obtain a valid test under the null. The reason for preferring a test based on the GRs is that the

test is optimal (has highest local asymptotic power) under correct specification of the probit

model for y2. Second, as in any specification testing context, a rejection of the null may occur

for many reasons. The variable y2 may be endogenous, but it could also be that the conditional

mean Ey1|y2,z1 is misspecified. Third, by following the approach proposed in this section,

the tests will not reject due to misspecifications of Dy1|y2,z other than Ey1|y2,z1. Thus, the

tests are robust because no auxiliary assumptions are imposed under the null.

6. A General Control Function Approach

The setup in Section 3, illustrated in Section 4, allows for joint and one-step QMLE in a

variety of situations, but these methods can be difficult to apply with certain discrete response

models for y1 or discrete EEVs, or both, particularly if we have more than one EEV. Even

slight extensions of standard models are difficult to handle if we are wedded to starting with a

“structural” model for y1 and then trying to obtain full MLEs or two-step estimators.

As an example, consider a probit response function with a binary EEV, but were the latter

interacts with unobserved heterogeneity:

Ey1|y2,z1,a1,d1  a1y2  z1d1

 1y2  z11  c1y2  z1q1

y2  1z2  v2  0

    (6.1)

    (6.2)

    (6.3)

where a1  1  c1 and d1  1  q1. Now, if a1,q1,v2 is multivariate normal we could use

a joint QMLE by finding Ey1|y2,z. But the expectation is not in closed form and the resulting

procedure would be computationally intensive.
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An alternative approach is suggested by the VATs derived in Section 5 combined with the

insights of Blundell and Powell (2003, 2004) and Wooldridge (2005). To describe the

approach, we need to review Blundell and Powell (2004) and the slight extension due to

Wooldridge (2005). BP study a fully nonparametric situation where

y1  g1y2,z1,u1     (6.4)

for unobservables u1. The average structural function is

ASFy2,z1 ≡ Eui1g1y2,z1,ui1,     (6.5)

so that the unobservables are averaged out. Further, BP assume that y2 (a scalar here for

simplicity) has the representation

y2  g2z  v2,     (6.6)

where u1,v2 is independent of z. Under independence of u1,v2 and the representation

y2  g2z  v2,

Du1|y2,z  Du1|v2.     (6.7)

Further, as shown by BP (2004), the ASF can be obtained from

h1y2,z1,v2 ≡ Ey1|y2,z1,v2.     (6.8)

In particular,

ASFy2,z1  Evi2h1y2,z1,vi2.

Unlike the ui1, for identification purposes we effectively observe the vi2 because

vi2  yi2 − g2zi, and g2 is nonparametrically identified. (Of course, we can also model

g2 parametrically and use standard N -asymptotically normal estimators.) Letting

v̂i2  yi2 − ĝ2zi     (6.9)
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denote the reduced form residuals, a consistent estimator of the ASF, under weak regularity

conditions, is

ASFy2,z1  N−1∑
i1

N

ĥ1y2,z1, v̂i2.     (6.10)

The BP (2004) framework is very general when it comes to allowing flexibility in g1 and

g2; in effect, an exclusion restriction is needed in the former and the latter must depend on

at least one excluded exogenous variable. Even if one wants to stay within a parametric

framework, the BP approach is liberating because it shows that a quantity of considerable

interest – the ASF – can be obtained from Ey1|y2,z1,v2 without worrying about the structural

function g1. In a parametric setting this means that, once Ey2|z is modeled and estimated,

attention can turn to Ey1|y2,z1,v2 or possibly Dy1|y2,z1,v2.

Directly modeling Dy1|y2,z1,v2 is the approach taken by Petrin and Train (2010) when y1

is a multinomial response (product choice) and y2 is replaced with a vector of prices. Starting

with standard models for Dy1|y2,z1,u1 – such as multinomial logit or nested logit – where u1

includes heterogeneous tastes, leads to complicated estimators. Petrin and Train suggest

modeling Dy1|y2,z1,v2 directly, where v2 is a vector of reduced form errors:

y2  G2z  v2. Given a linear reduced form for y2, the two-step estimation method is very

simple, because the second step is multinomial logit, nested logit, or a mixed logit model.

When the EEVs are continuous, approaches such as that proposed by Petrin and Train

(2010) can be viewed as convenient parametric approximations to an analysis that could be

made fully nonparametric (subject to practical issues such as number of observations relative

to the dimension of the explanatory variables). Unfortunately, when y2 is discrete, standard

models for Dy2|z along with structural models for Dy1|y2,z,u1, do not generally lead to
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simple CF estimation. Moreover, models with discrete EEVs are generally nonparametrically

identified (for example, Chesher, 2003). Therefore, if we want point estimates of average

partial effects when y2 is discrete, we must rely on parametric assumptions.

As we saw in Section 4, for a wide class of nonlinear models adding the generalized

residual produces a test for the null that y2 is exogenous. What if, as a general strategy, we use

generalized residuals as control functions in parametric nonlinear models with the hope that

this (largely) solves the endogeneity problem?

It is useful to determine assumptions under which a two-step control function method can

produce consistent estimators when the EEVs are discrete. For simplicity take y2 to be a scalar,

and first assume

Ey1|y2,z,r1  Ey1|y2,z1,r1,     (6.11)

which imposes the exclusion restriction conditional on heterogeneity r1. Notice that this

condition generalizes the BP approach because it allows for additional unobservables without

taking a stand on the exact nature of those unobservables – they could have discreteness, for

example. This extension is important for handling models such as fractional responses or

nonnegative responses because it is more natural to specify, say,

Ey1|y2,z1, r1  1y2  z11  r1 then to write y1 as a deterministic function of a larger

set of unobservables.

Next, let e2  k2y2,z be the proposed control function for some function k2. Under

(6.11),

Ey1|y2,z1,r1,e2  Ey1|y2,z1,r1,

so that e2 is properly excluded from the structural conditional expectation. Further, a key
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restriction, following BP and Wooldridge (2005), is

Dr1|y2,z  Dr1|e2.     (6.12)

In other words, e2 acts as a kind of sufficient statistic for characterizing the endogeneity of y2.

In the BP setup, e2 ≡ v2  y2 − g2z. In the Heckman linear switching regression framework,

e2  gr2 suffices, where gr2 is the generalized residual.

In general, we can verify (6.12) by starting with a generalization of the BP setup by

relaxing additivity of v2:

y2  g2z,v2     (6.13)

Then, we assume two conditions that imply (6.12):

Dr1|z,v2  Dr1|v2

Dv2|y2,z  Dv2|e2

    (6.14)

    (6.15)

Condition (6.14) is standard, as it is implied by r1,v2 independent of z. Condition (6.15) can

be shown in some cases where e2 includes generalized residuals – as in the binary response

case, for example.

If we maintain (6.11) and (6.12) then it follows from Wooldridge (2010, Section 2.2.5) that

the ASF can be obtained as

ASFy2,z1  Eei2h2y2,z1,ei2,     (6.16)

where

h2y2,z1,e2  Ey1|y2,z1,e2.     (6.17)

Asserting that (6.12) holds for discrete y2 has precedence, although it is typically imposed

indirectly. For example, Terza, Basu, and Rathouz (2008) (TBR) effectively use this

assumption when e2  y2 − z2, where y2 is binary and follows a probit model. In fact, for
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binary y1, TBR suppose a parametric model,

y1  11y2  z11  u1  0

u1  1e2  a1

a1|y2,z  Normal0,1
2

[Burnett (1997) actually proposed this approach but without any justification.] Given that the

score test uses the generalized residual, and that Eu1|y2,z is linear in the generalized residual

(not e2  y2 − z2), it seems slightly preferred to use the generalized residuals as e2. It is

important to remember that neither can be justified using the usual assumptions for the

bivariate probit model and neither is more or less general than the usual bivariate probit

assumptions.

Generally, my suggestion is to use convenient parametric models maintaining the key

condition (6.12) for an appropriately chosen function e2, typically a generalized residual. Then

parametric models can be applied to estimate the conditional mean Ey1|y2,z1,e2. In some

cases, we may actually specify a full conditional distribution, Dy1|y2,z1,e2 for example, if y1

is a binary, multinomial, or ordered response. The general method is as follows, assuming a

random sample of size N from the population:

1. Estimate a model for Dy2|z [or sometimes only for Ey2|z], where the model depends

on parameters 2. For the function ei2  k2yi2,zi,2, define generalized residuals as

êi2  k2yi2,zi, ̂2.     (6.18)

2. Estimate a parametric model for Ey1|y2,z1,e2 using a quasi-MLE by inserting êi2 for

ei2. Or, if Dy1|y2,z1,e2 has been fully specified, use MLE. In either case, let the parameter

estimator be ̂1.

3. Estimate the ASF as
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ASFy2,z1  N−1∑
i1

N

h1y2,z1,êi2, ̂1     (6.19)

where h1y2,z1,e2,1  Ey1|y2,z1,e2.

Inference concerning ASF can be obtained using the delta method – the particular form is

described in Wooldridge (2010, Problem 12.17) – or bootstrapping the two estimation steps.

How might we apply the general CF approach to the problem described in equations (6.1),

(6.2), and (6.3)? First, we would not specify (6.1) as the structural conditional mean, but we

would assume that (6.12) holds for e2  gr2 and use a mean function such as

Eyi1|yi2,zi1,gri2  1yi2  zi11  1gri2  yi2  gri2  zi11.     (6.20)

In other words, we take a standard functional form that restricts the mean function to the unit

interval – in this case the probit function – and add the control function in a fairly flexible way.

We get a simple test for the null of exogeneity and, hopefully, a reasonable approximation to

the ASF when we average out gri2:

ASFy2,z1  N−1∑
i1

N

̂1y2  z1̂1  ̂1gri2  y2  gri2  z1̂1.     (6.21)

A similar strategy is available if y2 is a corner solution and follows a Tobit model. In this case,

the generalized residual is given in equation (5.16).

An approach based on (6.20) is neither more nor less general than an approach that starts

by specifying Dy1|y2,z1,u1 and parametric assumptions in (6.13). While a more structural

approach may have more appeal conceptually, it is not nearly as simple as the control function

approach based on (6.20). If we are interested in the average structural function, (6.20) is more

direct.
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The drawback to the CF approach – one that it shares with structural approaches – is that it

relies on parametric functional forms. Because the ASF is not parametrically identified when

y2 is discrete, we have few options. Either we can use a parametric structural approach – an

example is given in Section 4.1 – the CF approach, change the quantity of interest, or only try

to bound specific parameters (such as an average treatment effect). The CF approach proposed

here should be viewed as a computationally simple complement to other approaches.

7. Concluding Remarks

I have argued that a general quasi-LIML approach can be used to obtain one-step estimator

for nonlinear models with endogenous explanatory variables. This approach leads to estimators

that are new for certain kinds of response variables, including a fractional response with a

binary endogenous explanatory variable. There are both theoretical and practical issues left to

be resolved. For example, in a quasi-MLE framework, are there useful conditions under which

the one-step quasi-LIML is asymptotically more efficient than a two-step control function

approach? Also, in a nonlinear setting, when might the one-step estimator have less bias than a

two-step method (provided there is a consistent two-step estimator available)?

The variable addition tests can be applied in a variety of settings when a generalized

residual for the EEV can be computed. These tests are computationally very simple. One issue

that needs further study is the best way to obtain tests when y2 is a vector of EEVs, some of

which are discrete.

The CF framework for discrete EEVs proposed in Section 6 can be justified under

parametric assumptions – assumptions that are no more or less general than more traditional
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assumptions. The CF approach leads to simple two-step estimators, simple tests of the null of

exogeneity, and straightforward estimation of average partial effects. Unfortunately, unlike in

the case where y2 is continuous, we cannot simply view the parametric assumptions as

convenient approximations: they are used to identify the average structural function.

Nevertheless, the parametric assumptions might still provide a useful approximation,

something that can be studied very simulation.
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